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ABSTRACT

With the rapid evolution of deep learming techmques. vision transtormers have cmerged as a promising
approach for image classification tasks. This explores the application of vision transformers on two distinct
datasets a proprictary dataset containing diverse plant images and the well-known CIFAR-100 dataset. The
objective is to evaluate the performance of vision transformers in the context of plant specics recognition and
general object classification The study begins with a comprehensive review of vision transformer

architecture and its potential advantages n handling image classification tasks. The proposed model 1s

trained and fine-tuned on the custom plant dataset, which consists of a variety of plant species captured
under different environmental conditions. To assess the model's generalization capabilities, it 1s further
evaluated on the CIFAR-100 dataset, which encompasses a broader range of object categories. The
experimental results demonstrate the effectiveness of the vision transformer in achieving competitive
accuracy on both datasets. The model's ability to capture mtricate featurcs of plant species suggests 1ts
potential utility in agricultural and environmental monitoring applications Additionally, the generalization
performance on CIFAR-100 highlights the versatility of the vision transformer architecture across diverse
image classification tasks. Furthermore, the rescarch mvestigates the impact of key hyperparameters, such as
patch size, model depth, and learning rate, on the performance of the vision transformer. The findings
contribute insights into optimizing the model for specific datasets and offer practical gwidance for
rescarchers and practitioners working on image classification tasks. In conclusion, this showcases the
successful application of vision transformers on a custom plant dataset and the CIFAR-100 benchmark. The
results underscore the adaptability of vision transformers in handling distinct image classification challenges

and open avenues for further exploration in the domain of plant science and computer vision.

Keyword: Vision Transformer. Image Classification. Deep Leaming, Plant Dataset, CIFAR-100,
Convolutional Neural Network (CNN). Hyperparameter Tuning, Computer Vision, Patch Size, Learning

Rate, Object Recognition
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Chapter I: Introduction

The fiecld of Tmage classification 1s a task m computer vision where the goal 15 1o categorize an mput image
mto one of several predefined classes or categories [U1s a fundamental problem i image analysis and
pattern recognition. The process mvolves tramimg a model using a set of Tabeled images, where cach image
is associated with a spectfic class or calegory. This has witnessed remarkable advancements in recent ycars,
drven pnimanly by the advent of deep learming architectures Among these architectures. the Vision
Transformer (ViT) has gained prominence for its unique approach to processing images., we delve into the
application of Vision Transformers for image classification tasks, specifically focusing on two distinct
datascts: a propuctary plant dataset and the CIFAR-100 dataset. The Vision Transformer. mtroduced by
Vaswam et al. in 2017 [1], represents a departure from the conventional convolutional neural network (CNN)

paradigm. Instead of relying on convalutional layers, the ViT operates on image patches, treating them as

sequential inputs to a transformer architecture ongmally designed for natural language processing tasks. This
departure from the spatial hierarchy of traditional CNNs introduces a novel way of capturing global
dependencies among image features, offering potential advantages in handling diverse and complex datasets.
Our motivation for this study stems from the need for effective image classification models m the domain of
plant science. Monitoring and categonizing plant species play a crucial role m various applications. including
agriculture, environmental conservation. and ccosystem management. The custom plant datasct employed in
this rescarch encompasses a wide array of plant species captured under varying environmental conditions.
The diversity in this dataset poses a challenge for traditional image classificaton models. making 1t an ideal
candidate for evaluating the cfficacy of Vision Transformers. In addition to the plant dataset, we evaluate the
ViT model on the CIFAR-100 dataset, a benchmark in the field of object recogmuion. CIFAR-100 consists
ol 100 classes. each containing 600 images. making 1t a challenging testbed for any image classification
model. The mclusion of CIFAR-100 in our study allows us to assess the generalization capabilities of the
Vision Transformer across a broader spectrum of object categories. The ViT model undergoes a training and
fine-tuning process on the custom plant dataset to speciahze i recogmizing various plant specics.
Subsequently, it 1s subjected to evaluation on the CIFAR-100 dataset to gauge 1ts adaptability and
performance in a more generalized setting. The outcomes of this not only contribute to the growing body of
knowledge on Vision Transformers but also provide valuable insights into the potential applications of such
models il_l the intersection of computer vision and plant science. One of the primary objectives of this 1s to
investigate the impact of key hyperparameters on the performance of the Vision Transformer. The patch size,
model depth, and learming rate are systematically explored to optimize the model for both the custom plant
dataset and CIFAR-100. This exploration is essential not only for achieving peak performance but also for
providing practical guidance to researchers and practitioners dealing with image classification tasks using

Vision Transformers
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Chapter 2: Literature Review

The literature surrounding image classification has witnessed a paradigm shift with the troduction of

TS T+ A . ~ ~ .
Vision Transformers (V1Ts). Vision Transformers represent a departure from the established convolutional
neural network (CNN) architecture, offering a novel approach to capturing spatial dependencies in images

The transformer  architecture, mally designed for natural language processing, has been adapted

successtully to process image data, demonstrating state-of=the-art performance m various computer vision

tasks. Vaswani et al (2017) introduced the tansformer architecture for sequence-to-sequence tasks 1n
natural language processing Building upon this. Dosovitskiy et al. (2020) proncered the i.lpphL'illIOI'l of
transformers in computer vision with the Vision Transformer (ViT) ViT divides an image into fixed-size
patches, hncarly embedding them before processing through a transformer encoder. This departure from the
gnd-like receptive fields of CNNs allows ViT 1o capture fong-range dependencies and mteractions among
image patches, leading to impressive performance in image classification tasks. Several studies have explored
the effectiveness of Vision Transformers in comparison to tradional CNNs. Radford et al. (2021)
demonstrated that ViTs can achieve competitive performance on various image classification benchmarks

Notably, ViTs have showcased a remarkable ability to scale with mcreased model size, outperforming CNNs
i terms of both accuracy and efficiency. Tn the realm of plant science, where aceurate speeies identification
15 crucial, the application of deep learning models has gamed taction Decep learnming models, particularly
CNNs, have been successfully applied to plant species recognition Lasks (Mchdipour Ghazi ct al., 2017)

However, the potential of Vision Transformers i this domam remams relatively unexplored Qur rescarch

aims to bridge this gap by evaluating the performance of ViTs on a diverse and proprietary plant dataset

The evaluation of models on benchmark datasets 15 a common pracuce to assess their generahization

capabiliies. The CIFAR-100 dataset has been a popular choice for this purpose. It consists of 100 abject

classes. each contaming 600 images, posing a challenging test for image classification models. The use of

CIFAR-100 in our study provides a benchmark for comparing the performance of Vision Transformers with

existing literature on CNNs and other deep learning models While Vision Transformers have demonstrated

their efficacy in various computer vision tasks, meluding image classification, their application to specific

domains, such as plant species recogmition, demands careful evaluauon Our literature review sets the st

age
for the exploration of Vision Transformers on a custom plant dataset, emphasizing the need to assess their
performance, optirmize hyperparameters, and provide valuable insights for researchers and practitioncrs in

both computer vision and plant science.
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Chapter 3: Materials and Methods

3.1 Dataset

In our research, we leverage a diverse set of datasets to comprehensively evaluate the pro
aset focused on millets plants.

posed approach for

i classification on both well-established benchmarks and a custom dat

T - v rece zed datascts and
Iis dual-pronged strategy aims to assess the model's generalization across widely recognized datasct

its adaptability 1o a context-specific agncultural scenario.

2.1.1 CIFAR-100 Dataset

® Orngin Keras Library
Geographic Origin: Varied, synthetically generated datascet
( haractenstics: CIFAR-100 is a well-known dataset contammg 100 classes, cach with 600 1mages,

covering a broad spectrum of object categories. The datasct 1s designed to challenge 1mage

classification models with diverse and complex visual concepls

3.1.2 Custom Millets Plant Datasect
@ Characteristics. This custom datasct is curated specifically for mullets plant speeies, encompassing

muluple varicties and conditions. The dataset mcludes images capturing various potential discascs

affecting nullets plants

3.2 Vision Transformer & Patch Encoder
ovided code implements a Vision Transformer (ViT) for image classification, a paradigm that has
rated remarkable success in natural language processing. Dosovitskiy et al. (2020) mtroduced the
vl model, building on the transformer architecture proneered by Vaswant et al. (2017). The ViT consists of

n blocks and multilayer perceptron (MLP) networks with a linear projection and positional

embedding mechanism.

In the VIT architecture (Fig. 1), an image is initially spht into fixed-size non-overlapping patches, which are
then flattencd and transformed into lower-dimensional representations. Each patch undergoes a leamable
lincar transformation to generate a lincar projection and positional embedding. These representations are
passed through a stack of N transformer blocks, each comprising multi-head self-attention (MHA) and an
MLP. Each transformer block includes normalization layers, residual conncctions, and a skip connection

between the input and the output of both MHA and MLP.
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Lhe selt-attention mechamism, MEA, 18 apphied to cach pateh separately. Tn MEAT input vectors are

transtormed mto three separate vectors: Q (Query). K (Key), and V (Value). The dot product between O andd

K gencrates a score matrix, which 1s then subjected 1o a softmax activation. The resultmy sel-attention

matrices are combined and processed through a lincar layer, leedig into - the repression head o

.« o ‘ . ’
classification. Normalization is applicd to avord issues with excessively large dot products during trnning

The ViT model's transformer blocks enhance semantic similarity across different image  locations,

conuributing to effective classification. The number ol MHA in a transformer encoder is o tunable
hyperparameter, providing flexibility based on application data.
The code includes a comprehensive VIiT model, complete with data augmentation, patch extraction, pateh

encoding, and multiple transformer blocks. The implementation uses TensorFlow and Keras, meorporating

TensorFlow Addons for the AdamW optimizer with weight decay.

This ViT model is then evaluated on image classification tasks using a combination ol publicly available
datasets, including CIFAR-100, and a custom datasct focused on millets plants. The training history,
including accuracy metrics, is stored for analysis. The provided code serves as a foundational framework for

experimenting with Vision Transformers on diverse image classification challenges

N x transformer block

Mulli-head self atlention

:‘ .'_’1‘ ,\_QI_JL_DM‘. Self atiention
|
8 | Output |
| 5 OBy | Output
L et J
Ak I -2
@ c [ Linear |
£ 8 } near. | MatMul 1
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- ' oncatenate —
2 g | - - [ SoftMax
_ = g i Self Attention T
it a o i T | NORM |
Input image | a | _ -
5 R —] )
b | [ Linear JJ” | Linear |J” | | MatMul
J P Hl
j lg—P K al kv

‘

Fig. 1. ViT block with multi-head self-attention units.

In Fig. 2, the schematic representation illustrates the crucial steps of patch visualization and encoding within

the Vision Transformer (ViT) framework. The process begins with the selection of a random image from the




CIFAR-TO0 dataset This image 1s then resized o a standardized image_size. after which the Patches class
s cmployed toextract non-overlappmg patches from the resized image. These patches, Hustrated n? thLl
diagram, showcase the decomposition ol the origmal image into smaller, distinet components. This visua
representation wids e comprehending how the ViT model iitially processes and segments input images.

settmg the stage for subsequent attention-based operations.:

; cructal
‘ s the role of the PatchEnc ‘omponent. This crucie
Following patch visualization, the diagram highlights the role of the PatchEncoder comj

step mvolves encoding the extracted patches, preparing them for effective processing by the subsequent
transformer blocks in the ViT model The PatchEncoder consists of two primary operations: a learnable
lincar ransformation and positional embedding The encoded patches. visualized in the diagram, arc then
'
passed to the transformer blocks, contributing cssential spatial and positional context to the ViT model's
overall understanding of the input image. This visual representation i Fig. 2 provides a concise overview of
the patch visualization and encoding stages, offering msights into the initial processing steps crucial for ViT-
based image classification.

Image size: 72 % 72
Patch size: 6 X 6
Patches per image: 144
Elements per patch: 108

Fig. 2. Patch Encoder(Visualization and patches formation)
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3.3 Experimental Setup

The expeniments were conducted on The ASUS TUF Gaming laptop features a robust hardware sctup.
meluding an AMD Ryzen processor and a dedicated GPU (or aceelerated computations. The Taptop runs on
the Ubuntu 18.04 LTS operating system, ensuring compaltibility with the experiment environment. The
AMD Ryzen CPU, with clock speeds ranging from 2.25 1o 3.4 Gllz, and 512 GB of RAM. provide ample

computing power and memory capacity for running the experiments efficiently.

The proposed model, along with other selected models for comparison, is implemented using the Keras
framework, harnessing the capabilities of the laptop's hardware. The laptop is cquipped with NVIDIA
CUDA vI1.5 and the cuDNN v8.3 library, facilitating GPU acceleration for deep learning tasks. This
experimental setup on the ASUS TUF Gaming laptop demonstrates the feasibility and performance of the
proposed model in a resource-constrained environment, extending the applicability of the models beyond

high-end workstations to more widely accessible computing platforms.

3.4 Flow Chart

Q START )
’— Load Data (CIFAR - 100 or
| own Datacet)

o

l: Inialize all the vanables J

Data Augmentanion ‘

(Transformation)

1l

Visualizauon of palches & ‘

Paich encoder

i

Visn Translormer
Architecture (making
perceptron Network and
Gwving imanes in a lixed size
of 32X32 for classificalion)
Execute and 1un the vision
transformer model for Vi;h_‘l

prediction

Saving the predicnon in
History lor validaton
Evalution by calculatng

accuracy, loss 7 o

‘o
5
\\/

Fig. 3. Process Flow




Chapter 4: Result

4.1 Result on CIFAR - 100 Dataset

After 100 epochs, the ViT model achieves around 330, accuracy and 82% top-3 accuracy on the test d

fose are not competitive results on the CIFAR-100 dataset, as a ResNet30V2 wained from scratch on

same data can achieve 67%, accuracy(Fig 9
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4.2 Result on Self Dataset

After 100 epochs. the ViT model achieves

These are not competitive results on the mi

around 66.6% accuracy and 66.6% top-5 accuracy on the test data.

llets custom datasel. as a ResNetS0V?2 trained from scratch on the

same data can achieve 3% accuracy(Fig. 5).
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Chapter 5: Conclusion

In s project, centered around the implementation ol i Vision Transtormer (ViT) using TensorFlow and
Keras The model underwent rigorous evaluation on twao distinet datascts, namely CIFAR-100 and a custom-
made nullets dataset, each posing unmique challenges and opportumties. The CIFAR-100 datasct. renowned
for 1ts diversity with 100 classes and small image resolutions (32x32 prxels). served as a standard benchmark
for assessmg the VIiT model's classificanon performance. The outcome revealed an accuracy  of
approximately 57%. ahigning with established benchmarks for sinular architectures on this - dataset.
Cransitioning to the custom millets datasct, tatlored for a specific application, the ViT model demonstrated
an improved accuracy of around 67%. This enhancement hinted at the model's adaptability to more
specialized datascts, where the feature space nught be more navigable However, the intniguing aspect hes in
the obscrved decline in aceuracy from CIFAR-100 to the millets dataset, raising pertinent questions about
the model's generalization capabilities. Several factors could contribute to this decline, encompassing datasct
charactenstics, model hyperparameters, and the cfficacy of data augmentation strategies. The millets datasct,
being more specialized and tailored to a particular applhication, might have enabled the model to glean more
relevant features for improved classification. Conversely, the model's performance on CIFAR-100, with its
diverse aray of classes, could be hindered by a more complex and varied feature space: To address these
nuances. future endeavors could delve mto nuanced hyperparameter tuning, considering learnimg rates, batch
sizes. and the optuimal number of Transformer layers for cach dataset. Furthermore, refimng data
augmentation strategies tailored to the unique charactenistics of” cach dataset nught unlock addiional
performance gains. Transfer learning strategres, such as leveragmg pre-tramed ViT models on larger datasets,
could potentially enhance the model's knowledge transier capabilities. The concept of ensemble Tearning,
amalgamating predictions from multiple ViT models with diverse imtializations or architectures, could offer
another avenue for performance improvement. Additionally, efforts to expand the millets dataset, both m
size and diversity, could potentially bolster the model's ability to generahze across a broader range of
instances. In conclusion, this project not only sheds hght on the capabihties of ViT models m image
classification tasks but also underscores the importance of tatloring models and strategics to the intricacies of
specific datasets. The observed variations in accuracy between CIFAR-100 and the millets dataset present
opportunities for refinement and future exploration, emphasizing the iterative and adaptive nature of
advancing machine learning models in real-world applications. Future work could focus on developing
methods to enhance the interpretability of Vision Transformer models. This includes research mto
techmiques that provide more transparent msights into the decision-making processes of ViTs, making them
more understandable for end-users and stakeholders m varous domams. Rescarch cfforts could be directed
towards making Vision Transformer models more scalable for large-scale agricultural systems. This involves
optimizing traming and inference procedures to handle extensive datasets and deploying models across

distributed computing environments.
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