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ABSTRACT 

With thc rapid cvolution of deep learning techniqucs. VIsion transformers have cmcrged as a promiSing 

approach tor image classification tasks. This explores the application of vision transformers on two distinct 

datasets. a proprietary dataset containing diverse plant images and the well-known CIFAR-100 dataset. The 

objective is to evaluate thc performnance of vision transforners in the context of plant species recognition and 

general object classification.The study begins with a comprehensive review of vision transformer 

architecturc and its potential advantages in handling image classification tasks. The proposcd model is 

traincd and fine-tuncd on the custom plant datasct, which consists of a variety of plant species captured 

under different environmental conditions. To assess the model's generalization capabilities, it is further 

cvaluated on the CIFAR-100 datasct, which encompasses a broader range of object categories. The 

experimental results demonstrate the effectiveness of the vision transformer in achieving competitive 

accuracy on both datasets. The model's ability to capture intricate fcaturcs of plant species suggests its 

potential utility in agricultural and cnvironmental monitoring applications. Additionally, the generalization 

performance on CIFAR-1 00 highlights the versatility of the vision transformer architecture across diverse 

image classification tasks. Furthermorc, the rescarch investigates the impact of key hyperparameters, such as 

patch size, modcl depth, and lcarning ratc, on the pcrformance of the Vision transformcr. The findings 

contribute insights into optimizing the model for specific datasets and offer practical guidance for 

rescarchers and practitioners working on imagc classification tasks. In conclusion, this showcases the 

successful application of vision transformers on a custom plant dataset and the CIFAR-100 benchmark. Tbe 

results underscore thc adaptability of vision transformers in handling distinct image class1fication challenges 

and open avenues for furthcr exploration in thc domain of plant science and computer vision. 

Keyword: Vision Transformer, Image Classification. Dcep Lcarming, Plant Dataset, CIFAR-100, 

Convolutional Neural Network (CNN). Hyperparameter Tuning, Computer Vision, Patch Size, Learming 
Rate, Objcct Recognition 
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Chapter 1: Introduction 

The ficld of Image class1fication is a task in computer vIsIon where the goal is lo categor1ze an nput Image 
into one of several predetined classes or categories It is a fundanmental problem in image analysts and 
pattem recognition. The prOcess involves training a molel using a set of labeled images, whcre cach imagc 

Is assocated with a speeific class or category. This has witnessed remarkable advancements in recent years. 
driven primarily by the advent of deep learning architectures. Among these architectures, the Vision 

Transtomner (ViT) has gaincd prominence for its unique approach to processing imagcs. we delve into the 
application of Vision Transformers for mage class1fication tasks, spec1fically focusing on two distinct 
datasets: a proprictary plant dataset and the CIFAR-100 dataset. The VIsIon Transformer, introduccd by 

Vaswani et al. in 2017 [1], represents a departure from the conventional convolutional neural network (CNN) 

paradigm. nstead of relying on convolutional layers, the ViT operates on image patches, reating them as 
sequential inputs to a transformer archtecture orig1nally designed for natural language processing tasks. This 
departure from the spatial hierarcly of traditional CNNS introduces a novel way of capturing global 

dependencies among image features, offering potential advantages in handling diverse and complex datasets. 
Our motivation for this study stems from the nced for ctfective image class1tication models in the domain of 

plant seience. Monitoring and categorizing plant species play a crucial role in various applications, includ1ng 

agriculturc. cnvironmental conservation. and ccosystem management The custom plant datasct employed in 
this rescarch encompasses a wide array of plant specics captured under vary1ng environmental conditions. 

The diversity in this dataset poses a challenge for trad1tional mage class1fication models. making it an ideal 

candidate for evaluat1ng the cfficacy of Vision Transtormers. In addition to the plant dataset, we cvaluate the 
VIT model on the CIFAR-100 dalaset, a benchmark in the field of object recognition. CIFAR-100 consists 
of 100 classes, each containing 600 images, making it a chalenging testbed for any image classification 
model. The inclusion of CIFAR-100 in our study allows us to asscss the gencralization capabilities of the 

Vision Transformer across a broader spectrunm of object categories. The ViT model undergoes a training and 

fine-tuning process on the custom plant dataset to spccialize in recognizing various plant species. 
Subsequently, it is subjected to evaluation on the CIFAR-100 dataset lo gauge its adaptability and 
pertormance in a more generalized setting. The outcomes of this not only contribute to the growing body of 
knowledge on Vision Transformers but also provide valuable insights into the potential applications of such 
mod�ls in the intersection of computer vision and plant science. One of the primary objectives of this is to 

investigate the impact of key hyperparameters on the performance of the Vision Transforner. The patch size, 
model depth, and learning rate arce systematically explored to optimize the model for both the custom plant 
dataset and CIFAR-100. This exploration is essential not only for achieving peak performance but also for 

providing practical guidance to rescarchers and practitioncrs dealing with image class1fication tasks using 
Vision Transforners. 



Chapter 2: Literature Review 

The iterature surToundng image classification has witnessed a parad1gm sh1ft with the introduction of 

Vision Transformers (ViTs). Vision Transfomers represent a departure fromn the establ1shcd convolutional 

neural network (CNN) architecture, offering a novel approach to capturing spat1al dependencies in imageS. 
The transformer architecture, initially designcd for natural language processing, has becn adapted 

successtully to process image data, demonstrat1ng statc-of-the-art performance in various computer vISIon 
tasks. Vaswani et al. (2017) introduced the transformer arch1tecture for sequence-to-sequence tasksS in 

natural language processing Build1ing upon this, Dosov Msk1y et al. (2020) pioncercd the appl1cation of 
transformers in computer vision with the Vision Transforner (ViT) VIT dvides an image into fixed-size 
patches, Inearly embedd1ng them before processing thuough a transtormer encoder. This departure from the 
grid-like reccptive ficlds of CNNs allows ViT to caplure long-range depcndencies and interactions among 

image patches, leading to impressive perfornmance in umage class1tication lasks. Several studies have explored 
the effectivencss of Vision Transformers in comparISon to trad1tional CNNS. Radford ct al. (202 1) 

demonstratcd that ViTs can achieve compctitive performance on various image classification benchmarks. 

Notably. ViTs have showcased a remarkable abil1ty to seale with ncreased model size, outperforming CNNS 

in terms of both accuracy and efficicncy. In the rcalm of plant sCIcnce, where accurate spccies identification 

is crucial, the application of deep learning models has gained traction Deep learning models, particularly 

CNNs, have been successfully applicd to plant species rccognition tasks (Mehdipour Ghazi et al., 2017). 

However, the potential of Vision Transformers n this doman remans relat1vely unexplorcd. Our rescarch 

aims to bridge this gap by evaluating the performance of ViTs on a d1verse and proprietary plant dataset 
The cvaluation of models on benchmark datascts is a common practice to assess ther generalization 
capab1l1ties. The CIFAR-100 dataset has been a popular choice for this purpose. I consists of 100 object 

classes, each containing 600 images, posing a challenging test for image class1fication models. The use of 
CIFAR-100 in our study provides a benchmark for comparing thc performance of Vision Transformcrs with 

existing literaure on CNNs and other deep learning models While Vision Transformers have demonstrated 
their cfficacy in various computcr vision tasks, including image class1fication, their application to spccific 

domains, such as plant species recognition, demands careful evaluation. Our literature review sets the stage 

for the exploration of Vision Transformers on a custom plant dataset, emplhasizing the need to assess their 

performance, optimize hypcrparameters, and provide valuable ins1ghts for rescarchers and practitioners in 

both computer vision and plant science. 



3.1 Dataset 

Chapter 3: Materials and Methods 

In our rescarch, we leverage a diverse set of datasets to comprehensively evaluate the proposed approach Tor 
imapc classification on both well-cstablishcd bencharks and a custom datasct focuscd on millets plants. 

This dual-pronged strategy aims to assess the model's generalization across widely recognized datasets and 

its adaptability to a context-specific agricultural scenario. 

3.1.1 CIFAR-100 Dataset 

Origin: Kcras Library 
Geographic Origin: Varicd, synthetically generated dataset 
Characteristics: CIFAR-100 is a well-known dataset containing 100 classes, cach with 600 images, 

covering a broad spcctrum of objcct categorics. The datasct is designcd to challenge imagc 

classitication modcls with diverse and complex visual concepts. 

3.1.2 Custom Millets Plant Dataset 

Characteristics. This custom dataset is curatcd specifically for millets plant spccies, cncompassing 
multuple varicties and conditions. The dataset includes images capturing various potential discases 
affecting millets plants. 

3.2 Vision Transformer & Patch Encoder 

1 nrovded code implements a Vision Transforner (ViT) for image classification, a paradigm that has 
aled remarkable success in natural language processing. Dosovitskiy et al. (2020) introduced the 

vit model, building on the transformer architecture pionccred by Vaswani ct al. (2017). The ViT consists of 

On blocks and multilayer perceptron (MLP) networks with a linear projection and positional 
embedd1ng mechanism. 

In the ViT architecture (Fig. I). an image is initially split into fixed-size non-overlapping patches, which are 
then flattcncd and transformed into lower-dimensional represcntations. Each patch undergocs a learnable 
lincar transformation to generate a lincar projection and positional embeding. These representations are 
passed through a stack of N transformer blocks, cach comprising multi-bead selfattention (MHA) and an 
MLP. Each transformer block includes normalization layers, residual conncctions, and a skip connection 

between the input and the output of both MHA and MLP. 



The self-attention mechanisn, MHA, Is applied to cach patch separately. ln MIIA, mput vecos te 
transtomed into three separate vectuors: Q(Query). K (Key). and V (Valuc) The dot product betwen Q and 
K generates a score matrix, which is then subjected to a softmax activation. IIhe tesulng ell-attentio 
matrices are conmbined and processed through a lincar layer, leeding into the regresion head lor 

classification. Normalization is applied to avoid issucs with exeessively large dot products duing tany 

The ViT model's transformer blocks enhance semantie similarity acrOSs d1llerent inage oclionts, 
conributing to cffcctive classitication. The number of MHA ) a trustormer encoder is a lunable 

hyperparanmeter. providing flexibility based on application data. 

The code includes a comprchensive ViT model, complcte with data augnnentation, patch extraction, patch 

encod1ng, and multiple transformer blocks. The implementation uses TensorFlow and Keras, incorporatung 

TensorFlow Addons for the Adam W optimizer with weight decay. 

This ViT model is then evaluated on image classification tasks using a combination of publicly ava1lable 

datascts, including CIFAR-100, and a custom datasct tocuscd on millets plants. The training history. 
ncluding accuracy metrics, is stored for analysis. The provided code serves as a foundational frannevork for 

experimenting with Vision Transformers on diverse image classification challenges. 
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In Fig. 2, the schematic representation illustrates the crucial steps of patch visualization and encoding within 

the Vision Transformer (ViT) framework. The process begins with the selection of a random image from the 



CIEAR-T00 dataset This mave Is then res/ed to a standard1zed image size. after wlhhch the Patches clasS 

IN cniploycd to cxtract non-overlappng patches from the resized image. These patches. illustated in the 
dagran, showcase the decomposition of the original image mto smaller, distinct componcnts. This visual 
representation aids n comprehend1ng how the ViT model initially processes and segments input images, 

sclling the stage for subscquent attention-based opcrations. 

Following patch visualization, the diagram highlights the role of the PatchEncoder component. This crucial 
step nvolves encodng the extracted patchcs, preparing them for clfcctive process1ng by the subsequcnt 
lranslormer blocks in the ViIT model. The PatchEncoder consists of two primary operations: a learnable 

Iincar transformation and positional enbedding The encoded patches. visualized in the diagram, are then 
passed to the transformer blocks, contributing cssential spatial and positional context to the ViT model's 
overall understanding of the input image. This visual representation in Fig. 2 prov1des a concise overview of 

the patch visualization and encoding stages, offering insights into the initial proccss1ng steps crucial for Vl 
based image classification, 

Image si:e: 72 X 72 
Patch size 6 X 6 

Patches per image: 144 

Fig. 2. Patch Encoder(Visualizalion and patches formation) 

Elements per patch: 108 



3.3 Experimental Setup 
The experiments were conducted on The ASUS TUF Gaming laptop features a robust hardware selu. 
including an AMD Ryzen processor and a dedicated GPU for accelerated computations. The laptop runs on 

the Ubuntu 18.04 LTS operating system, ensuring compatibility with the experiment environment. The 
AMD Ryzen CPU, with clock spceds ranging fron 2.25 to 3.4 GHz. and 512 GB of RAM, provide ample 
computing power and memory capacity for running the cxperincnts cfficicntly. 

The propOsed model, along with other sclected models for comparison, is implemented using the Keras 

framework. harnessing the capabilities of the laptop's hardware. The laptop is cquippcd with NVIDIA 
CUDA vll.5 and the cuDNN V8.3 library, facilitating GPU acceleration for deep learning tasks. This 

experimental setup on the ASUS TUF Gaming laptop demonstrates the fcasibility and performance of the 
proposed model in a resource-constraincd cnvironment, cxtcnding the applicability of the models beyond 

high-end workstations to more widely accessible computing platforms. 

3.4 Flow Chart 
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4.1 Result on CIFAR - 100 Dataset 

After 100 epochs, the ViT model achieves around 35° accuracv and 82% top-5 accuracy on the test dta 

These are not competitive results on the CIFAR-100 dataset, as a ResNets0V2 trained from seratch on the 
same data can achieve 67°% accuracvFig. 4). 

Et/t 

f 1: t00 

N 

1 

1 

1 

21A te 

Chapter 4: Result 

221 2tee 

1822 

.1M 

t 

t 5 arA 

toyA 

.4121 

.a22 

r 

. 

altrra 

al taAAT 



L/176 

Epoch 8/2 
125/16 

176/1e 

tpo 81/20 

1/176 

175/1 76 

176/17% 

Epoch 8/00 
176/276 |= 

176/176 | 
ico 1/1a 

176 

ipoch a3/10 

Epoch 95/10 

176/176 [z:. 
ipoch %/10o 

176/17 I 

176/176 f== 
Epoch 3/10e 

176/1 7G I-
Epoct 9/100 

ipoc n :80/100 
176/176 

313/2 13 

test acury s5. 145 

2e/ten 

126ms/st ep les 

127s/sten 

121 126ms/st eg 

12s es/steg 

22s 12ies/step 

221 12as/step loss 

22s 1/6s/ster 

22s 127s/step Ioss 1.e113 

22s 123/st ep 

22% 125es/step 

225 12ts/step 

22s 125s/step loss 

22s 125ms/step 

23* 12+/ste 

225 123ts/step 

22s 126s/st ep 

224 126as/step 

22s 1253/step 

22s 125es/ ste 

224 12 Sas/steg 

225 125ns/stog 

loss 

22s 12 5#s/step 

1e641 

225 125rs/step 

1.0424 

1.est 

.62 15 

loss e.8221 

4s 1205/step 

Loss: a. 7558 

225 12 5ms/step loss: 0. 7692 

Test top 5 accuracy: 81.86% 

loss: e.8a5a 

loss: e.ea2 

loss:e.747 

225 126m5/step loss 3.7183 

lGss: 0.182 

Joss e.)622 

lcss: 0.7958 

22s 12Sas/step loss: . 754) 

Ioss: G. 7898 

loss: 8.7603 

225 125ms/step loss: e.7542 

loss: a.7505 

225 12ses/steg loss: .7410 

225 125as/ste lcss: 9.1419 

$4 

9.624 

crurary .6a6) 

.6929 

CaC y.6924 

cur ary 9. /01 

atCar y 0. 7547 

curacy: 0.522 

à Cur aCy: . 1s64 

top 5- acCur acy D.s 32 

top 5-ac uracy: 0.956) 

KCur acy: 9.7526 top-5-dt turacy: a.955e 

accur at y: .755! top-5- xcuracy: a.76 

a. 7635 

a.161 

accur dcy a.7693 

acCur ay. . 76 30 

accuraky: 9. 7722 

ur aCy: .761 3 top S- Curaty: .9604 

Jccuray .7689 

accuracy .7661 

top 5 4 4y: 09oa 

arcuray 8.7711 

tog 5 Curacy: .94J 

accuracy: 8. 7692 

atcur ay: .7730 

accuret y: 9. 71 36 

aCe ur à y: 0.7187 

accuray. 2.77a) 
acCurcy: 9.5514 

top 

e.96, 

top 

to9-5-at uracy: e.967 

top 5 atCuracy: .D609 

top-sàc cuacy: 4.9590 

top-St curacy: e.594 

top 5-accuracy: 9.962 

tup 5 accuracy: 8.9599 

top-S-acuray a.4597 

top 5 acsury: 0.96 33 

top 5- dcCracy: e.94 )6 

top 5 accuracy: 0.91e 

too 5 accuray: 0.9622 

top 5-accur acy: ).9635 

top-5- dcrur ac y: 0.96)5 
top S accuracy: 0.81 86 

val lon1 

val lon 

val loss 

val lo55 

.2241 

val loss .8216 

val los$: 1. a34 

val loss 1.8391 

I.41 

1416 

val loss: 1.8464 

114 

val loss: 1.878y 

val loss: 1.891 

val loss. 1.B584 

vàl loss: 1.a49 

val loss: 1.906 

val los5 1.8645 

val loss: 1.8549 

val loss 1.9162 

vàl loss 

val loss: 1.9915 

Vol loss 

vàl loss: 1.9219 

val los: 

va! loss 

Fig. 4. Result on CIFAR - I00 Dataset 

1.8928 

val lo5s: 1.4966 

val loss: !.8723 

val los 

I.9347 

I.°132 

.9233 

1.923) 

ial acturacy e.4 

acur ac/:e44 

val accur acy .5412 

val_aurac y: e.5423 

val aCuracy: esA68 

val accuracy: 8.54a6 

val accury: e.AA5 

va! acturacy: 0.5524 

Val acCuracy: e.4 

val scturacy: 0.54 

val dcturaty: o.54)4 

val acuracy: a.5490 

val àccurary: o.ss4e 

val àceurat/: .541e 

val sccuracy : e.550e 

val_acuraty: 0.S4 

val _accuracy: 0.s44 

val accurac y: o.5522 

val accuracy: 0.5470 

val aCuracv: e.sse4 

vJl cCuracy: 0.542a 
val accuracy: 0.542a 

val tp 

rat y 9. 

al top 5urk: 9. s4 

val tog S acur y .21/9 

val tooS ccr acy .#144 

val too-5 arc ur acy 9.8284 

val top-5-aCur acy: 8.81 

val top tur ac : a.«1 2 

val top 5 xcur aCy: 9, a166 

val top 5 xcur acy: e. a112 

val tot c ur at I: .81 

val tog 3Cur acy 9.8140 

val top-5 acuf ay 

val top-S acCur ay 

too-5ccuray 

0.#174 

0.ga9a 

val top-5-cCur acy 

val top5 aceur acy 

val top-5 accur aty 

val top S ur ac y .3178 

val topS a Cur ac y .8136 

9.81s 

.8144 

val top 5-ccur ac y: e.a128 

val tcp5 acaracy: 0.31 20 
loss: 1.8487 

kCur ay: 9.19)) 

Curacy 9. 7e31 

cCur acy: 2.7593 tog-s-ccuracy: a.957) 



The loe and Necry Fux fo e epoche ae 

Fig & Accrcy and Los Curve on 0 Fpeches 



4.2 Result on Self Dataset 

Afier l00 epochs, the ViT model achieves around 66.6% accuracy and 66.6% top-5 accuracy on the test 

These are not competitive results on the millets custom dataset, as a ResNetsov2 trained trom scratch on the 
same data can achieve 53% accuracy(Fig. 5). 
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Chapter 5: Conclusion 

In this project, centered around the implementation of a Vison Transformer (ViT) using TensorFlow and 
Keras The model undenwent rigorous evaluation on two d1stinct datasets, namcly CIFAR-100 and a custom 
made m1llets dataset, each pos1ng unique challenges and opportunities. The CIFAR-100 datasct. renowned 
for its diversity with 100 classes and small image resoluttons (32x32 pixcs). served as a standard benchmark 
for assessing the ViT model's class1ticalion perfornance. The outcome revcaled an accuracy of 
approximately 57%, al1gning with establ1shed benchmarks for sim1lar architectures on this dataset. 

Transitioning to the custom millets dlatasct. (ailored for a spceitic application, the ViT modcl demonstrated 
an mproved accuracy of around 67%. Th1s enhancement hunted at the model's adaptability to more 

special1zed datasets, where the fcature space might be more navigable However. the intriguing aspect lies in 
the obscrved decline in aceuracy from CIFAR-100 to the millets dataset, raising pertincnt qucstIons about 
the model's generalization capabilities. Several factors could contribute to this decl1ne, encon1passing dataset 
characternstics, model hyperparameters, and the cfficacy of data augmentat1on stratcgies. The millets datasct, 
being more specialized and tailored to a particular application, might have enabled the model to glcan more 
relevant features for improved classification. Conversely. the model's perfornance on CIFAR-100, with its 
diverse aray of classes, could be hindered by a more complex and varied fcature space To address these 
nuances, future endeavors could delve into nuanced hyperparameter tuing, considering learning rates, batch 

sizes. and the optimal number of Transformer layers for cach dataset. Furthermore, refining data 
augmentation stratcgics tailored to the unique characterist1cs of cach datasct m1ght unlock additional 
performance gains. Transfer learning strategies, such as leveragng pre-traned VIT models on larger datasets, 
could potcntially cnhance the model's kinowlcdgc transler capabilities. The concept of cnsemble lcarning. 

amalgamating predictions from nultiple ViT models w1th d1verse nutializations or architectures, could offer 

another avenue for performance improvement. Additionally, efforts to cxpand the millets dataset, both in 
size and diversity, could potentially bolster the modcl's ability to generalize across a broader range of 

instances. In conclusion, this project not only sheds light on the capab1lities of ViT nodels in image 
classification tasks but also underscores the importance of tailoring modcls and strategics to the intricacics of 

sDccific datascts. The observed variations in accuracy betwecn CIFAR-100 and the millets datasct present 

opportunities for refinement and future exploration, enphas1zing the iterative and adaptive nature of 

advancing machinc lcarning models in real-world applications. Futurc work could focus on developing 
methods to enhance the interpretability of Vision Transformer nodels. This includes research into 

(cchniques that provide more transparent insights into the decision-making processes of ViTS, making them 
more understandable for end-users and stakeholders n various domains. Rescarch efforts could be directed 

towards making Vision Transformer models more scalable for large-scale agricultural systems. This involves 
optimizing training and inference procedures to handle cxtensive datascts and deploying models across 
distributed computing cnvironments. 
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