

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

NAAC Accredited with A++ Grade

Minor Project Report On

Customer Segmentation

Submitted By:

Piyush Rathore(0901AM211037)

Anshika Tripathi(0901AM211012)

Faculty Mentor:

Ms. Nitya Thagele

Assistant Professor

**Department of Information Technology
Mits Gwalior**

CENTRE FOR ARTIFICIAL INTELLIGENCE
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR-474005 (MP) est. 1957

JULY-DEC. 2023

CERTIFICATE

This is certified that Piyush Rathore (0901AM211037) and Anshika Tripathi(0901AM211012) has submitted the project report titled “Customer Segmentation” under mentorship of **Ms. Nitya Thagele**, in partial fulfillment of the requirement for the award of degree of **Bachelor of Technology** in the Artificial intelligence and Machine learning from Madhav Institute of Technology and Science, Gwalior.

(Ms. Nitya Thagele)
Assistant Professor
Department of Information
Technology MITS Gwalior

(Dr. R.R Singh)
Coordinator
Centre for Artificial
Intelligence

DECLARATION

I hereby declare that the work being presented in this project report, for the partial fulfillment of requirement for the award of the degree of Bachelor of Technology in AIML at Madhav Institute of Technology & Science, Gwalior is an authenticated and original record of my work under the mentorship of **(Ms.Nitya Thagele) Assistant Professor** (Department of Information Technology MITS Gwalior).

I declare that I have not submitted the matter embodied in this report for the award of any degree or diploma anywhere else.

Piyush Rathore (0901AM211037)

Anshika Tripathi (0901AM211012)

3rd Year,

Centre for Artificial Intelligence

ACKNOWLEDGEMENTS

The full semester project has proved to be pivotal to my career. I am thankful to my institute, Madhav Institute of Technology and Science to allow me to continue my disciplinary/interdisciplinary project as a curriculum requirement, under the provisions of the Flexible Curriculum Scheme (based on the AICTE Model Curriculum 2018), approved by the Academic Council of the institute. I extend my gratitude to the Director of the institute, Dr. R. K. Pandit and Dean Academics, Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Centre for Artificial Intelligence, for allowing me to explore this project. I humbly thank Dr. R. R. Singh, Coordinator, Centre for Artificial Intelligence, for his continued support during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty mentors. I am grateful to the guidance of **(Ms. Nitya Thagele) Assistant Professor** (Department of Information Technology MITS Gwalior) for his continued support and guidance throughout the project. I am also very thankful to the faculty and staff of the department.

Piyush Rathore (0901AM211037)

Anshika Tripathi(0901AM211012)

3rd Year,

Centre for Artificial Intelligence

ABSTRACT

Customer segmentation is simply grouping customers with similar characteristics. These characteristics include geography, demography, behavioural, purchasing power, situational factors, personality, lifestyle, psychographic, etc. The goals of customer segmentation are customer acquisition, customer retention, increasing customer profitability, customer satisfaction, resource allocation by designing marketing measures or programs and improving target marketing measures.

Clustering is an efficient technique used for customer segmentation. Clustering places homogenous data points in a given dataset. Each of these groups is called a cluster. While the objects in each cluster are similar between themselves, they are dissimilar to the objects of other groups. Clustering is a type of data mining approach in machine learning classified under unsupervised learning. This is because it is able to discover patterns and information from unlabelled data. It is used extensively in machine learning, classification, and pattern recognition.

Clustering algorithms include the K-means algorithm, hierarchical clustering, DBSCAN. In this project, the k-means clustering algorithm has been applied in customer segmentation. K-means is a clustering algorithm based on the principle of partition. The letter k represents the number of clusters chosen. It is the most common centroid-based algorithm.

Table Of Contents

	Page No
Certificate.....	1-7
Declaration.....	
Acknowledgement.....	
Title/Abstract.....	
List Of figures.....	
Chapter 1 :Project Overview	7-9
1. INTRODUCTION.....	
2. DATASET.....	
3. Scope of Analysis.....	
Chapter 2: Micro Level Analysis	9-12
1. Customer Segmentation Analysis	
1. Challenges of Performing Analysis.....	
2. Algorithm.....	
Chapter 3: Macro Level Analysis	12-19
1. Clustering	
2. Centroid Based : K means.....	
3.43Solution.....	
Chapter 4: Mini Level Analysis (Final Analysis and Design)	19-28
1. Preparing the Data.....	
2. Criteria for Clustering.....	
3. Scaling and Reformatting the Data.....	
4. Brief Overview of Code.....	
5. Clustering Results.....	
Chapter 5: Conclusion.....	28-32
References.....	

List Of Figures

Figure No.	Name of Figure	Page No.
Figure 2.4.1	Structure of Department	4
Figure 4.6.1	Gender Distribution	12
Figure 4.6.2	Age Distribution	13
Figure 4.6.3	Annual Income Distribution	14
Figure 4.6.4	Spending Score Distribution	15
Figure 4.6.5	Annual Income Vs Spending Score	16
Figure 4.6.6	Elbow Graph	15
Figure 4.6.7	Graph after applying K-means	17

Chapter 1: Project Overview

Effective decisions are mandatory for any company to generate good revenue. In these days competition is huge and all companies are moving forward with their own different strategies. We should use data and take a proper decision. Every person is different from one another and we don't know what he/she buys or what their likes are. But, with the help of machine learning technique one can sort out the data and can find the target group by applying several algorithms to the dataset. Without this, It will be very difficult and no better techniques are available to find the group of people with similar character and interests in a large dataset. Here, The customer segmentation using K-Means clustering helps to group the data with same attributes which exactly helps to business the best. We are going to use elbow method to find the number of clusters and at last we visualize the data.

2. Keywords

Clustering, Elbow Method, K-Means Algorithm, Customer Segmentation, Visualization.

Introduction

1.1 Introduction

Nowadays the competition is vast and lot of technologies came into account for effective growth and revenue generation. For every business the most important component is data. With the help of grouped or ungrouped data, we can perform some operations to find customer interests.

Data mining helpful to extract data from the database in a human readable format. But, we may not known the actual beneficiaries in the whole dataset. Customer Segmentation is useful to divide the large data from dataset into several groups based on their age, demographics, spent, income, gender, etc. These groups are also known as clusters. By this, we can get to know that, which product got huge number of sales and which age group are purchasing etc. And, we can supply that product much for better revenue generation.

Initially we are going to take the old data. As we know that old is gold so, by using the old data we are going to apply K-means clustering algorithm and we have to find the number of clusters first. So, at lastly, we have to visualize the data. One can easily find the potential group of data while observing that visualization.

The goal of this paper is to identify customer segments using the data mining approach, using the

partitioning algorithm called as K-means clustering algorithm. The elbow method determines the optimal clusters.

3.2 Problem Statement

Customer Segmentation is the best application of unsupervised learning. Using clustering, identify segments of customers in the dataset to target the potential user base. They divide customers into various groups according to common characteristics like gender, age, interest, and spending habits so they can market to each group effectively. Use K-Means Clustering and also visualize the gender and age distributions. Then analyze their annual income and spending scores. As it describes about how we can divide the customers based on their similar characteristics according to their needs by using k-means clustering which is a classification of unsupervised machine learning.

4. Existing System

The existing method is storing customer data through paperwork and computer software (digital data) is increasing day by day. At end of the day they will analyse their data as how many things are sold or actual customer count etc. By analysing the collected data they got to know who is beneficial to their business and increase their sales. It requires more time and more paperwork. Also, it is not much effective solution to find the desired customers data.

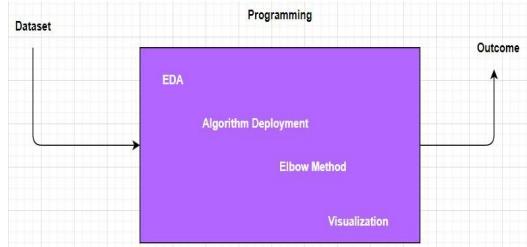
5. Proposed System

1. Proposed Method

To overcome the traditional method i.e paper work and computerized digital data this new method will play vital role. As we collect a vast data day by day which requires more paperwork and time to do. As new technologies were emerging in today's world. Machine Learning which is powerful innovation which is used to predict the final outcome which has many algorithms. So for our problem statement we will use K-Means Clustering which groups the data into different clusters based on their similar characteristics. And then we will visualize the data.

2. System Architecture

Initially we will see the dataset and then we will perform exploratory data analysis which deals with the missing data, duplicates values and null values. And then we will deploy our algorithm k-means clustering which is unsupervised learning in machine learning.



As in order to find the no of clusters we use elbow method where distance will be calculate through randomly chosen centres and repeat it until there is no change in cluster centres. Thereafter we will analyse the data through data visualization. Finally we will get the outcome.

3. Algorithm

1. K-Means Clustering

- ⦿ K Means algorithm is an iterative algorithm that tries to partition the dataset into K predefined distinct non overlapping sub groups which are called as cluster.
- ⦿ Here K is the total no of clusters.
- ⦿ Every point belongs to only one cluster.
- ⦿ Clusters cannot overlap.

5.3.2 Steps of Algorithm

- ⦿ Arbitrarily choose k objects from D as the initial cluster centers.
- ⦿ Repeat.
- ⦿ Assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster.

- Update the cluster means, i.e. calculate the mean value of the objects for each cluster.

- Until no change.

6. Methodology

1. First of all we will import all the necessary libraries or modules (pandas, numpy, seaborn).
2. Then we will read dataset and analyse whether it contains any null values, missing values and duplicate values. So we will fix them by dropping or fixing the value with their means, medians etc which is technically named as Data Preprocessing.
3. We will deploy our model algorithm K-Means Clustering, which divides the data into group of clusters based on similar characteristics. To find no.of clusters we will use elbow method.
4. Finally, we will visualize our data using matplotlib, which concludes the customers divided into groups who are similar to each other on their group.

7. Implementation And Analysis

1. Overview of a Dataset

This is a mall customer segmentation data which contains 5 columns and 200 rows. For this Project we have used Mall Customer Dataset taken from “kaggle”, here our main objective is to divide customers into groups according to common characteristics.

CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15
1	2	Male	21	15
2	3	Female	20	16
3	4	Female	23	16
4	5	Female	31	17
...
195	196	Female	35	120
196	197	Female	45	126
197	198	Male	32	126
198	199	Male	32	137
199	200	Male	30	137

200 rows × 5 columns

2. Exploratory Data Analysis

It deals with the data preprocessing, whether it contains any missing values or null values. There after we will see the information and description of the dataset.

1. Information of the dataset

```
#df.info()
```

```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
 #   Column           Non-Null Count  Dtype  
--- 
 0   CustomerID      200 non-null    int64  
 1   Gender          200 non-null    object  
 2   Age             200 non-null    int64  
 3   Annual Income (k$) 200 non-null    int64  
 4   Spending Score (1-100) 200 non-null    int64  
dtypes: int64(4), object(1)
memory usage: 7.9+ KB

```

As here it overview the information of the data. And it gives it doesn't contain any null values.

As we will remove the irrelevant data which is customer id.

```
df.drop(["CustomerID"], axis=1, inplace=True)
```

```

# so here customer data is not required to our analysis. We will drop it.
df.drop(["CustomerID"], axis=1, inplace=True)

# printing data frame again (Now, CustomerID column is removed)
df

   Gender  Age  Annual Income (k$)  Spending Score (1-100)
0   Male    19             15                  39
1   Male    21             15                  81
2 Female   20             16                  6
3 Female   23             16                 77
4 Female   31             17                  40
5 Female   22             17                 76
6 Female   35             18                  6
7 Female   23             18                 94
8   Male    21             15                  81
9 Female   20             16                  6
10  Male   21             15                 77
11  Male   21             15                 40
12  Male   21             15                 76
13  Male   21             15                 94
14  Male   21             15                 81
15  Male   21             15                 77
16  Male   21             15                 40
17  Male   21             15                 76
18  Male   21             15                 94
19  Male   21             15                 81
20  Male   21             15                 77
21  Male   21             15                 40
22  Male   21             15                 76
23  Male   21             15                 94
24  Male   21             15                 81
25  Male   21             15                 77
26  Male   21             15                 40
27  Male   21             15                 76
28  Male   21             15                 94
29  Male   21             15                 81
30  Male   21             15                 77
31  Male   21             15                 40
32  Male   21             15                 76
33  Male   21             15                 94
34  Male   21             15                 81
35  Male   21             15                 77
36  Male   21             15                 40
37  Male   21             15                 76
38  Male   21             15                 94
39  Male   21             15                 81
40  Male   21             15                 77
41  Male   21             15                 40
42  Male   21             15                 76
43  Male   21             15                 94
44  Male   21             15                 81
45  Male   21             15                 77
46  Male   21             15                 40
47  Male   21             15                 76
48  Male   21             15                 94
49  Male   21             15                 81
50  Male   21             15                 77
51  Male   21             15                 40
52  Male   21             15                 76
53  Male   21             15                 94
54  Male   21             15                 81
55  Male   21             15                 77
56  Male   21             15                 40
57  Male   21             15                 76
58  Male   21             15                 94
59  Male   21             15                 81
60  Male   21             15                 77
61  Male   21             15                 40
62  Male   21             15                 76
63  Male   21             15                 94
64  Male   21             15                 81
65  Male   21             15                 77
66  Male   21             15                 40
67  Male   21             15                 76
68  Male   21             15                 94
69  Male   21             15                 81
70  Male   21             15                 77
71  Male   21             15                 40
72  Male   21             15                 76
73  Male   21             15                 94
74  Male   21             15                 81
75  Male   21             15                 77
76  Male   21             15                 40
77  Male   21             15                 76
78  Male   21             15                 94
79  Male   21             15                 81
80  Male   21             15                 77
81  Male   21             15                 40
82  Male   21             15                 76
83  Male   21             15                 94
84  Male   21             15                 81
85  Male   21             15                 77
86  Male   21             15                 40
87  Male   21             15                 76
88  Male   21             15                 94
89  Male   21             15                 81
90  Male   21             15                 77
91  Male   21             15                 40
92  Male   21             15                 76
93  Male   21             15                 94
94  Male   21             15                 81
95  Male   21             15                 77
96  Male   21             15                 40
97  Male   21             15                 76
98  Male   21             15                 94
99  Male   21             15                 81
100  Male   21             15                 77
101  Male   21             15                 40
102  Male   21             15                 76
103  Male   21             15                 94
104  Male   21             15                 81
105  Male   21             15                 77
106  Male   21             15                 40
107  Male   21             15                 76
108  Male   21             15                 94
109  Male   21             15                 81
110  Male   21             15                 77
111  Male   21             15                 40
112  Male   21             15                 76
113  Male   21             15                 94
114  Male   21             15                 81
115  Male   21             15                 77
116  Male   21             15                 40
117  Male   21             15                 76
118  Male   21             15                 94
119  Male   21             15                 81
120  Male   21             15                 77
121  Male   21             15                 40
122  Male   21             15                 76
123  Male   21             15                 94
124  Male   21             15                 81
125  Male   21             15                 77
126  Male   21             15                 40
127  Male   21             15                 76
128  Male   21             15                 94
129  Male   21             15                 81
130  Male   21             15                 77
131  Male   21             15                 40
132  Male   21             15                 76
133  Male   21             15                 94
134  Male   21             15                 81
135  Male   21             15                 77
136  Male   21             15                 40
137  Male   21             15                 76
138  Male   21             15                 94
139  Male   21             15                 81
140  Male   21             15                 77
141  Male   21             15                 40
142  Male   21             15                 76
143  Male   21             15                 94
144  Male   21             15                 81
145  Male   21             15                 77
146  Male   21             15                 40
147  Male   21             15                 76
148  Male   21             15                 94
149  Male   21             15                 81
150  Male   21             15                 77
151  Male   21             15                 40
152  Male   21             15                 76
153  Male   21             15                 94
154  Male   21             15                 81
155  Male   21             15                 77
156  Male   21             15                 40
157  Male   21             15                 76
158  Male   21             15                 94
159  Male   21             15                 81
160  Male   21             15                 77
161  Male   21             15                 40
162  Male   21             15                 76
163  Male   21             15                 94
164  Male   21             15                 81
165  Male   21             15                 77
166  Male   21             15                 40
167  Male   21             15                 76
168  Male   21             15                 94
169  Male   21             15                 81
170  Male   21             15                 77
171  Male   21             15                 40
172  Male   21             15                 76
173  Male   21             15                 94
174  Male   21             15                 81
175  Male   21             15                 77
176  Male   21             15                 40
177  Male   21             15                 76
178  Male   21             15                 94
179  Male   21             15                 81
180  Male   21             15                 77
181  Male   21             15                 40
182  Male   21             15                 76
183  Male   21             15                 94
184  Male   21             15                 81
185  Male   21             15                 77
186  Male   21             15                 40
187  Male   21             15                 76
188  Male   21             15                 94
189  Male   21             15                 81
190  Male   21             15                 77
191  Male   21             15                 40
192  Male   21             15                 76
193  Male   21             15                 94
194  Male   21             15                 81
195  Male   21             15                 77
196  Male   21             15                 40
197  Male   21             15                 76
198  Male   21             15                 94
199  Male   21             15                 81

```

7.2.2 Description of the data

```
#df.describe()
```

```

   Age  Annual Income (k$)  Spending Score (1-100)
count  200.000000          200.000000          200.000000
mean   38.850000          60.560000          50.200000
std    13.969007          26.264721          25.823522
min    18.000000          15.000000          1.000000
25%    28.750000          41.500000          34.750000
50%    36.000000          61.500000          50.000000
75%    49.000000          78.000000          73.000000
max    70.000000          137.000000         99.000000

```

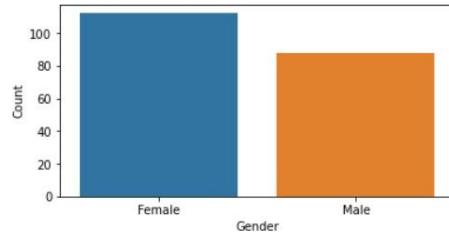
It describes about the count which counts the no of rows in it, mean of the columns, standard deviations, maximum and minimum and percentiles etc.

Gender plot Analysis

Here it overview the gender analysis

```
#Gender Distribution
genders=df.Gender.value_counts()
plt.figure(figsize=(6,3))
sns.barplot(x=genders.index,y=genders.values)
plt.xlabel('Gender')
plt.ylabel('Count')
plt.show()
```

So we label the x-axis as Gender and y-axis as Count and we plot it by using barplot.



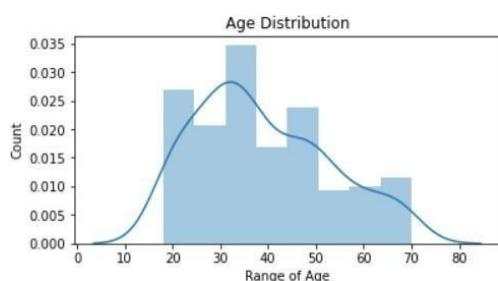
From the plot we will conclude that there are more female customers than the male customers i.e female customers are more than 100 whereas male customers are nearly 80.

Age plot

We will use distplot for the distribution of age of the customers.

```
plt.figure(figsize=(6,3))
sns.distplot(df['Age'])
plt.title('Age Distribution')
plt.xlabel('Range of Age')
plt.ylabel('Count')
plt.show()
```

So we label X-axis as range of age and y-axis as count.

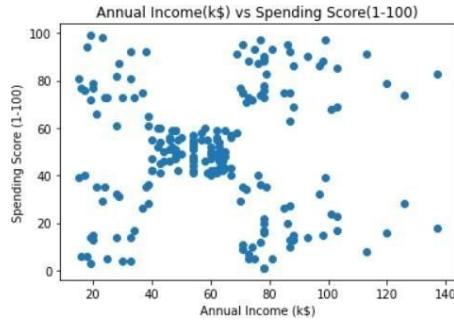


From the plot, it varies the age from nearly 20 to 70. it is evident that the age of the customers between 30 - 40 are more, then after 20-30 etc.

Annual Income vs Spending Score

As we will use scatterplot and labelled x-axis as Annual Income(k\$) and y-axis as Spending Score(1-100)

```
plt.scatter(df['Annual Income (k$)'],df['Spending Score (1-100)'])
plt.title('Annual Income(k$) vs Spending Score(1-100)')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```



From the plot we observed that it varies from low annual income with low expenditure or spending money to high annual income with high expenditure.

Elbow Method

The elbow method is based on the observation that increasing the number of clusters can help to reduce

the sum of within-cluster variance of each cluster. This is because having more clusters allows one to capture

finer groups of data objects that are more similar to each other.

To define the optimal clusters, Firstly, we use the clustering algorithm for various values of k. This is

done by ranging k from 1 to 10 clusters. Then we calculate the total intra-cluster sum of square. Then,

we proceed to plot intra-cluster sum of square based on the number of clusters. The plot denotes the

approximate number of clusters required in our model. The optimum clusters can be found from the graph

where there is a bend in the graph.

First we will consider the data X which as only two columns they are annual income and spending score.

```
X=df[['Annual Income (k$)','Spending Score (1-100)']]
```

```
X.head()
```

	Annual Income (k\$)	Spending Score (1-100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40

```
wcss=[]
```

```
for i in range(1,11):
```

```
km=KMeans(n_clusters=i)
```

```
km.fit(X)
```

```
wcss.append(km.inertia_)
```

```
plt.figure(figsize=(6,3))
```

```
plt.plot(range(1,11),wcss)
```

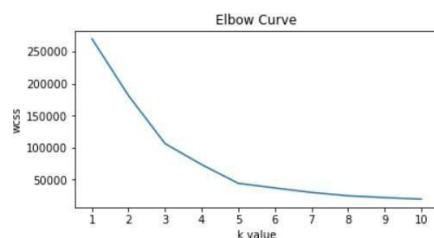
```
plt.title('Elbow Curve')
```

```
plt.xlabel('k value')
```

```
plt.xticks(np.arange(1,11,1))
```

```
plt.ylabel('wcss')
```

```
plt.show()
```



So from the graph we observed that the at 5 there is bend and it can be considered as k which is no of clusters.

Therefore, k=5 i.e no of clusters are equal to 5.

Fitting the Algorithm

```
km=KMeans(n_clusters=5)
km.fit(x)
y=km.predict(x)
df['Cluster']=y
df.head()
```

As here we initialized the kmeans as km with 5 clusters and we will fit it. There after we will predict the data and store it in y. And then we will add new column named as Cluster and data as y.

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	Male	19	15	39	4
1	Male	21	15	81	3
2	Female	20	16	6	4
3	Female	23	16	77	3
4	Female	31	17	40	4

So from the figure we observed that each customer is labelled with cluster which is based on their characteristics.

Visualization the clusters

Visualizing the clusters based on Annual Income and Spending Score of the customers. As here we plot a graph named as Clusters of Customers to visualize the data in terms of groups or cluster.

```
plt.figure(figsize=(15,7))

plt.scatter(df["Annual Income (k$)"][df.Cluster == 0], df["Spending Score (1-100)"]
[df.Cluster == 0], c='blue', s=60,label='Cluster 0')

plt.scatter(df["Annual Income (k$)"][df.Cluster == 1], df["Spending Score (1-100)"]
[df.Cluster == 1], c='red', s=60,label="Cluster 1")

plt.scatter(df["Annual Income (k$)"][df.Cluster == 2], df["Spending Score (1-100)"]
[df.Cluster == 2], c='green', s=60,label='Cluster 2')

plt.scatter(df["Annual Income (k$)"][df.Cluster == 3], df["Spending Score (1-100)"]
[df.Cluster == 3], c='yellow', s=60,label='Cluster 3')

plt.scatter(df["Annual Income (k$)"][df.Cluster == 4], df["Spending Score (1-100)"]
[df.Cluster == 4], c='black', s=60,label='Cluster 4')
```

```

plt.title('Clusters of Customers')

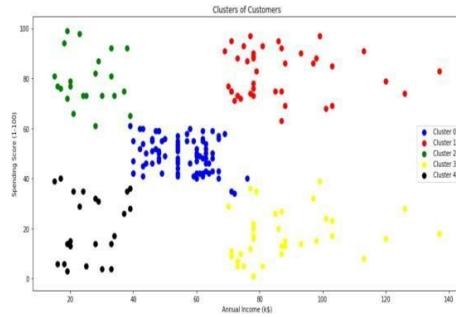
plt.legend()

plt.xlabel('Annual Income (k$)')

plt.ylabel('Spending Score (1-100)')

plt.show()

```



So from the above one we observed that the there are 5 clusters which are named as 0, 1, 2, 3, 4.

- Cluster 0 which is at centre, average annual income with average spending score.
- Cluster 1 which is at top right, highest annual income with highest spending score.
- Cluster 2 which is at top left, lowest annual income with highest spending score.
- Cluster 3 which is at bottom right, high annual income with low spending score.
- Cluster 4 which is at bottom left, lowest annual income with lowest spending score.

Customer Segmentation - Using k-means

About: Customer Segmentation is a popular application of unsupervised learning. Using clustering, identify segments of customers to target the potential user base. They divide customers into groups according to common characteristics like gender, age, interests, and spending habits so they can market to each group effectively.

Use K-means clustering and also visualize the gender and age distributions. Then analyze their annual incomes and spending scores.

CODE:

In [1]:

```
#importing required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

In [2]:

```
#reading data using pandas to a dataframe and printing its head values
customer = pd.read_csv('Customer-
Segmentation.csv') customer.head()
```

Out [2]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

There are 5 columns CustomerID, Gender, Age, Annual Income and Spending Score in our dataframe 'customer'

In [3]:

```
#checking size of data
customer.shape
```

Out [3]: (200, 5)

We have a data set with 200 rows and 5 columns.

In [4]:

```
#checking dataframe for any NULL values
customer.isnull().sum()
```

Out [4]:

CustomerID	0
Gender	0
Age	0
Annual Income (k\$)	0
Spending Score (1-100)	0
dtype: int64	

It clearly shows that there is no NULL value present in our dataframe.

```
In [5]: #Getting 5 point summary of our dataframe
customer.describe()
```

```
Out[5]:
```

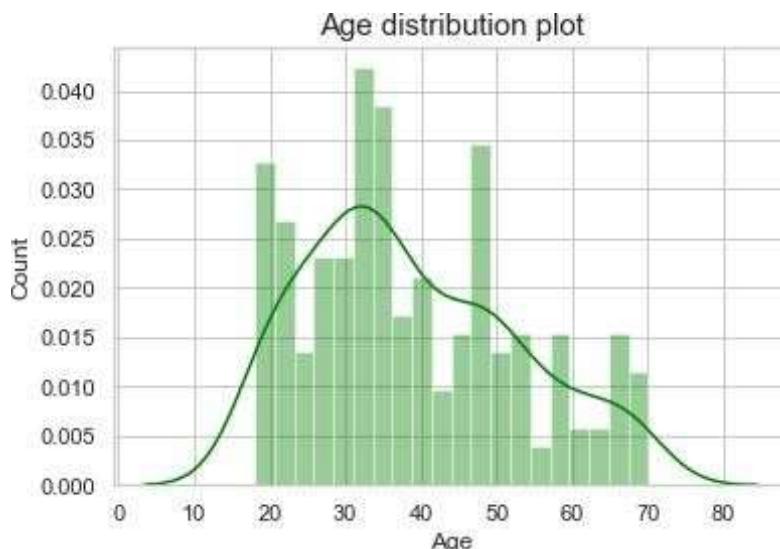
	Customer ID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

We got values like mean, std deviation, min, max, Q1, Q2 and Q3 for all attributes.

```
In [6]: #applying grid to all our plots for better visuals
sns.set(style="whitegrid")
```

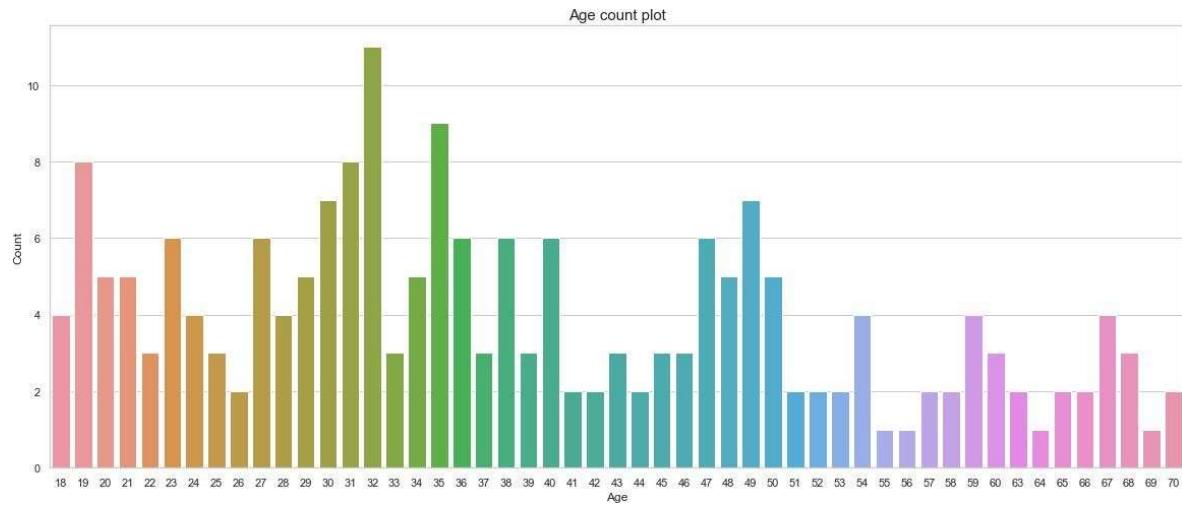
Visualizing various Distributions

```
In [7]: # distribution plot for 'Age'
sns.distplot(customer['Age'], color= 'green', bins=20)
plt.title('Age distribution plot', fontsize = 15)
plt.xlabel('Age', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```



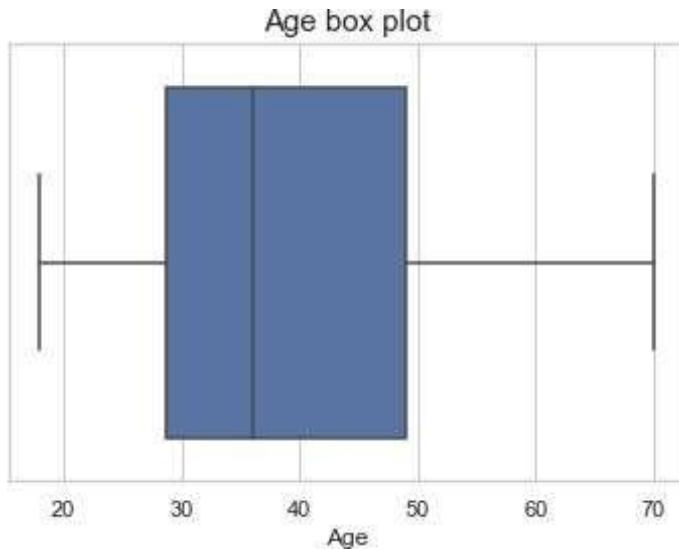
This shows that our data has customer ranges from 10 years to 80 years.

```
In [8]: # count plot for 'Age'
plt.figure(figsize=(20,8))
sns.countplot(customer['Age'])
plt.title('Age count plot', fontsize = 15)
plt.xlabel('Age', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```



This plot is more clear view on counting customer based on their Age. Also we can see that 11 customers are 32 years old which is the most value count.

```
In [9]: # box plot for 'Age'
sns.boxplot(customer['Age'])
plt.title('Age box plot', fontsize = 15)
plt.xlabel('Age', fontsize = 12)
plt.show()
```



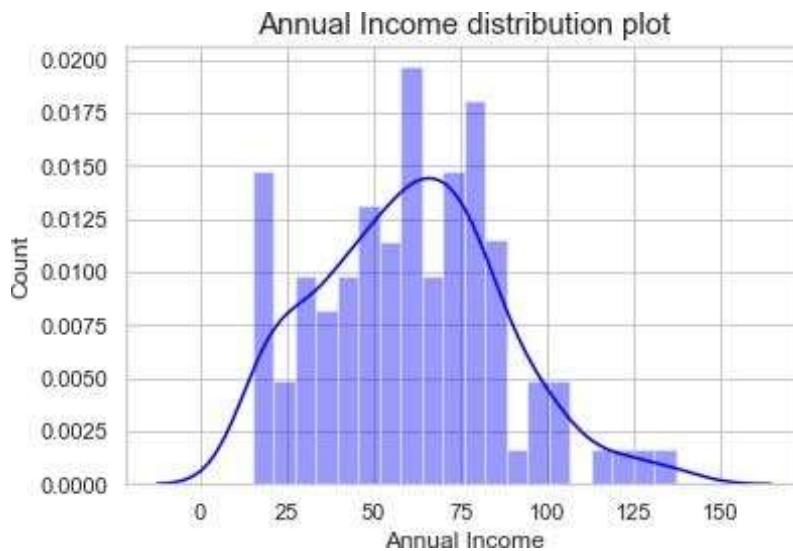
Based on 5 point summary we can get a clear picture of various aspect of customer based on their age.

```
In [10]: # violin plot for 'Age'
sns.violinplot(y = 'Age' , x = 'Gender' , data = customer)
plt.title('Age violin plot', fontsize = 15)
plt.xlabel('Gender', fontsize = 12)
plt.ylabel('Age', fontsize = 12)
plt.show()
```



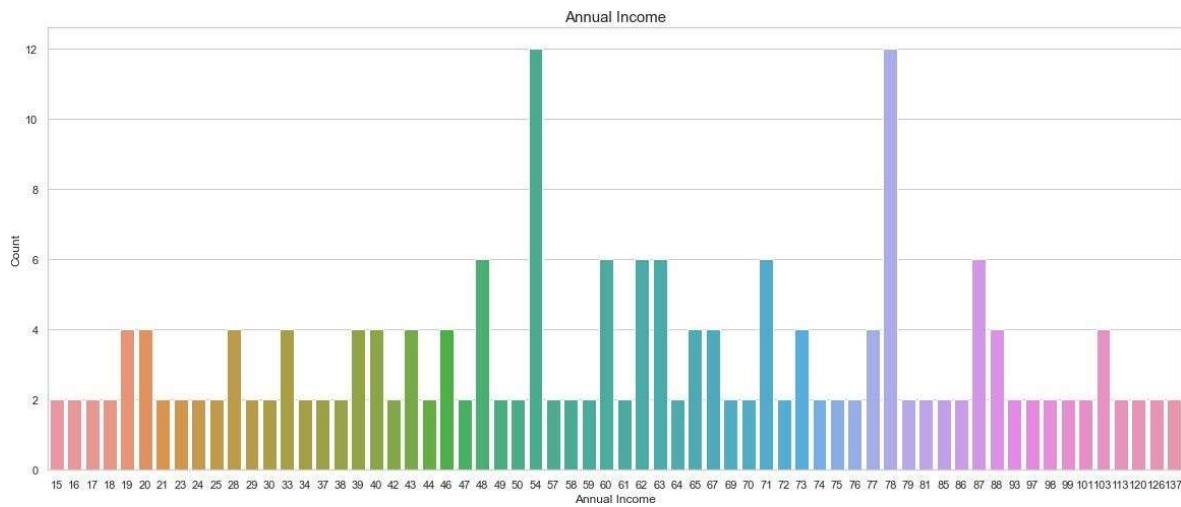
This violin plot shows that we have higher number of female customer who belongs to age group of 30 years.

```
In [11]: # distribution plot for 'Annual Income'
sns.distplot(customer['Annual Income (k$)'], color= 'blue', bins=20)
plt.title('Annual Income distribution plot', fontsize = 15)
plt.xlabel('Annual Income', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```



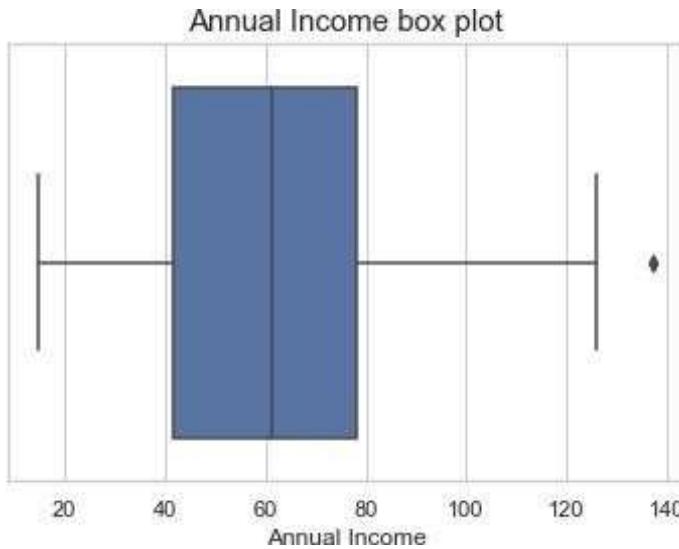
This shows that our data has customer ranges from income of 0k to 150k.

```
In [12]: # count plot for 'Annual Income'
plt.figure(figsize=(20,8))
sns.countplot(customer['Annual Income (k$)'])
plt.title('Annual Income', fontsize = 15)
plt.xlabel('Annual Income', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```



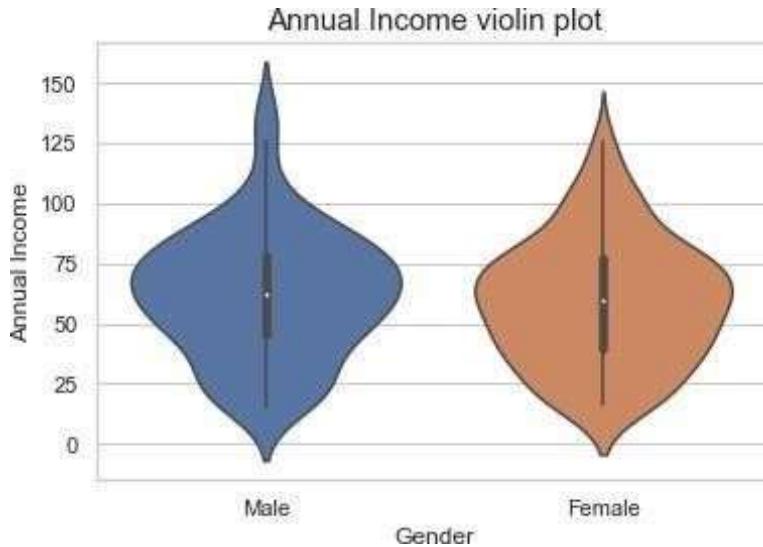
This plot is more clear view on counting customer based on their Income. Also we can see that 12-12 customers are 54 years and 78 years old which is the most value count.

```
In [13]: # box plot for 'Annual Income'
sns.boxplot(customer['Annual Income (k$)'])
plt.title('Annual Income box plot', fontsize = 15)
plt.xlabel('Annual Income', fontsize = 12)
plt.show()
```



Based on 5 point summary we can get a clear picture of various aspect of customer based on their income.

```
In [14]: # violin plot for 'Annual Income'
sns.violinplot(y = 'Annual Income (k$)' , x = 'Gender' , data = customer)
plt.title('Annual Income violin plot', fontsize = 15)
plt.xlabel('Gender', fontsize = 12)
plt.ylabel('Annual Income', fontsize = 12)
plt.show()
```

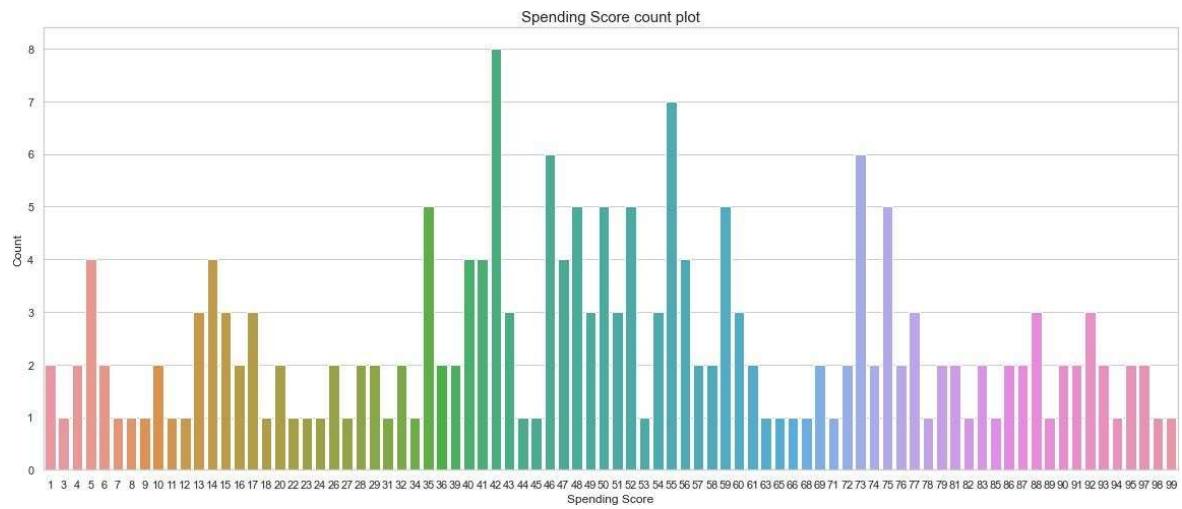


This violin plot shows that we have higher number of male customer who have more income.

```
In [15]: # distribution plot for 'Spending Score'
sns.distplot(customer['Spending Score (1-100)'], color= 'orange', bins=20)
plt.title('Spending Score distribution plot', fontsize = 15)
plt.xlabel('Spending Score', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```

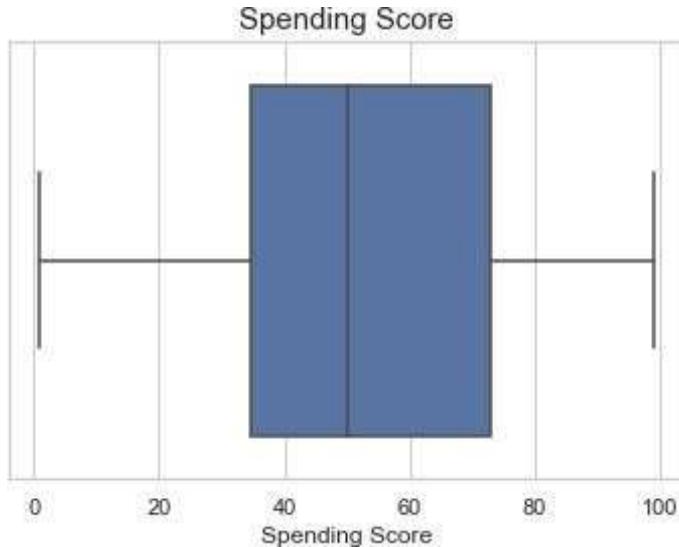

This shows that our data has customer ranges from with -20 to 120 spending score.

```
In [16]: # count plot for 'Spending Score'
plt.figure(figsize=(20,8))
sns.countplot(customer['Spending Score (1-100)'])
plt.title('Spending Score count plot', fontsize = 15)
plt.xlabel('Spending Score', fontsize = 12)
plt.ylabel('Count', fontsize = 12)
plt.show()
```



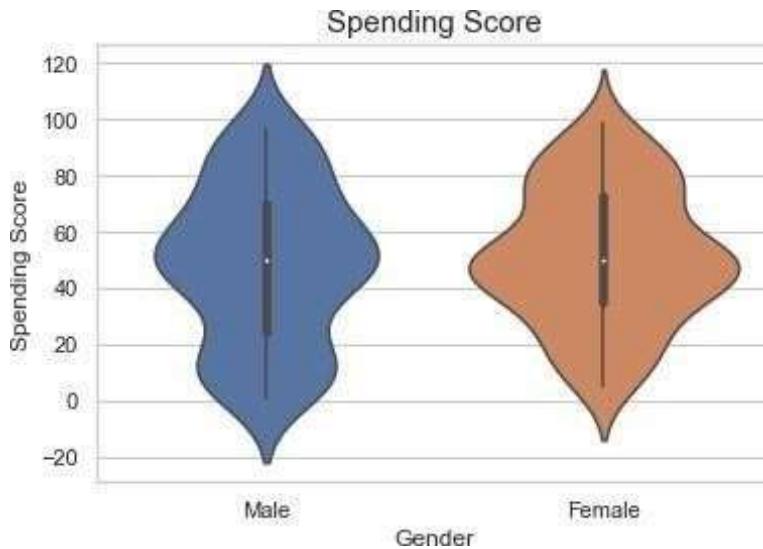
This plot is more clear view on counting customer based on their Age. Also we can see that 8 customers are 42 years old which is most value count.

```
In [17]: # box plot for 'Spending Score'
sns.boxplot(customer['Spending Score (1-100)'])
plt.title('Spending Score', fontsize = 15)
plt.xlabel('Spending Score', fontsize = 12)
plt.show()
```



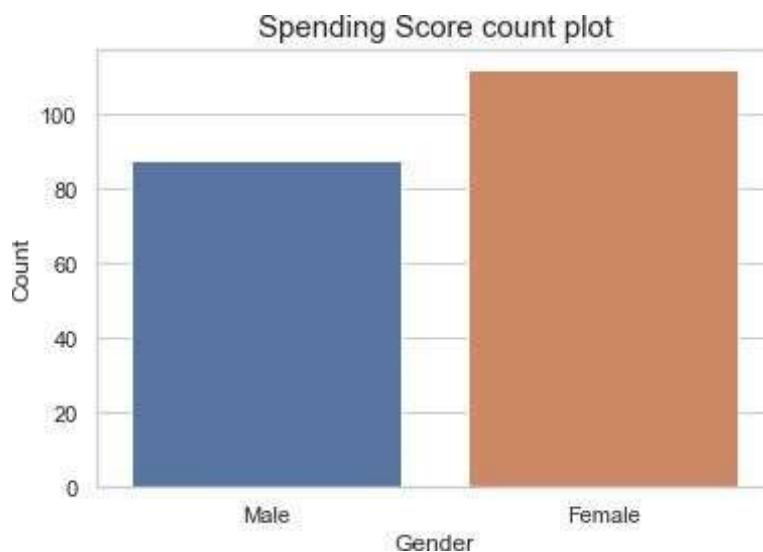
Based on 5 point summary we can get a clear picture of various aspect of customer based on their spending score.

```
In [18]: # violin plot for 'Spending Score'  
sns.violinplot(y = 'Spending Score (1-100)' , x = 'Gender' , data = custom  
plt.title('Spending Score', fontsize = 15)  
plt.xlabel('Gender', fontsize = 12)  
plt.ylabel('Spending Score', fontsize = 12)  
plt.show()
```



This violin plot shows that we have higher number of female customer who have mostly spending score around 50 .

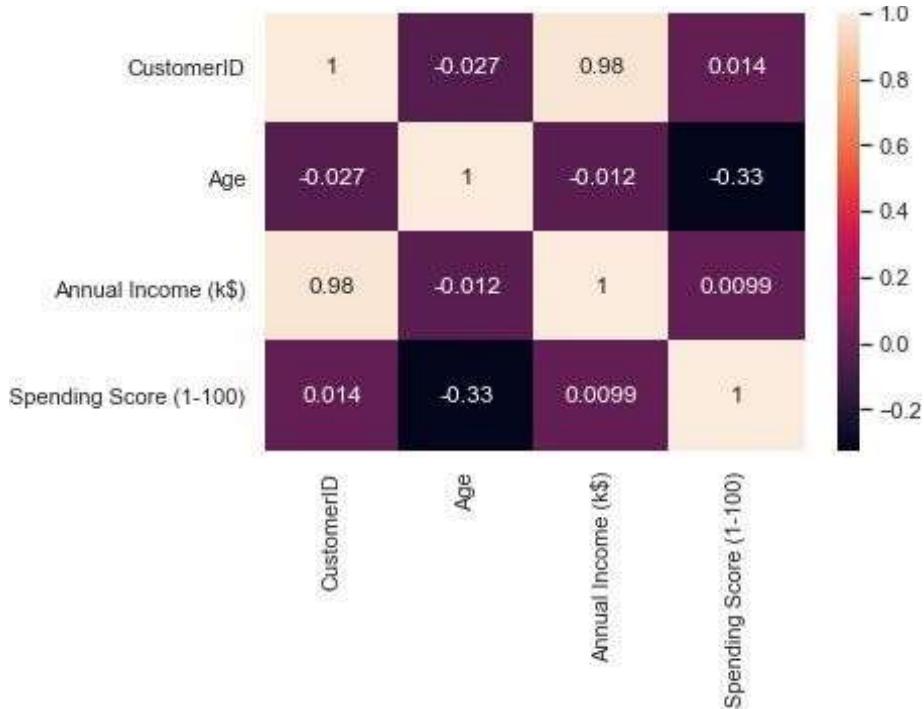
```
In [19]: # count plot for 'Gender'  
sns.countplot(x='Gender', data=customer)  
plt.title('Spending Score count plot', fontsize = 15)  
plt.xlabel('Gender', fontsize = 12)  
plt.ylabel('Count', fontsize = 12)  
plt.show()
```



This plot clearly shows that we have more female customer compare to male customers.

```
In [20]: # heatmap to show correlation of various Attributes  
sns.heatmap(customer.corr(), annot = True)
```

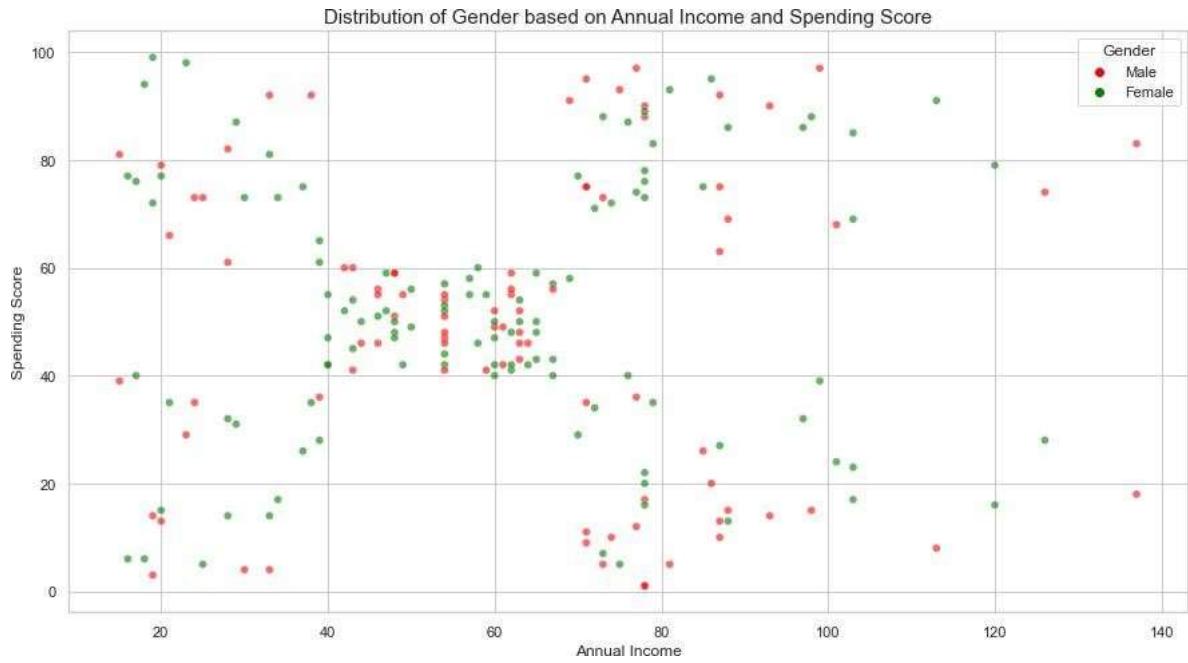
Out [20]: <AxesSubplot:>



From this plot we got that income and spending score correlates to each other with a good score. But age and spending score does not correlates efficiently.

Cluster based on Annual Income and Spending Score

```
In [21]: plt.figure(figsize=(15,8))
sns.scatterplot(customer['Annual Income (k$)'], customer['Spending Score'
    ( palette= ['red','green'] ,alpha=0.6)
plt.title('Distribution of Gender based on Annual Income and Spending Score')
plt.xlabel('Annual Income', fontsize = 12)
plt.ylabel('Spending Score', fontsize = 12)
plt.show()
```

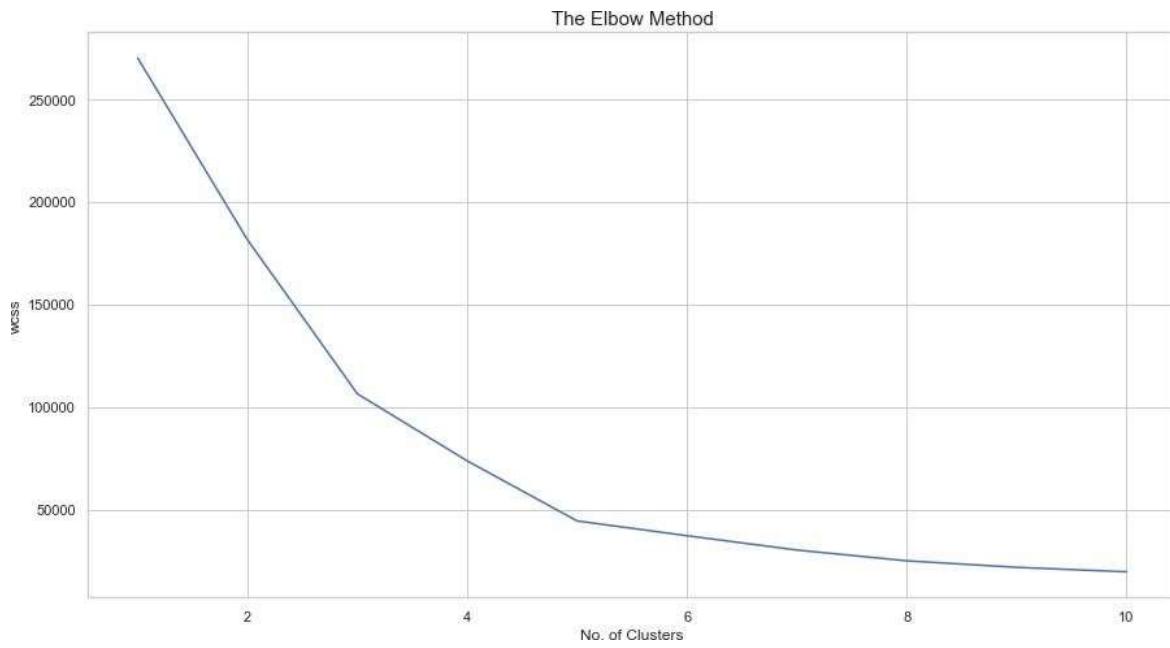


This scatter plot show the distribution of customers based on their income, spending score and gender. And we can see customer cluster clearly in this plot.

```
In [22]: Income_Spend = customer[['Annual Income (k$)', 'Spending Score (1-100)']]
from sklearn.cluster import KMeans

wcss = []
for i in range(1, 11):
    km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10)
    km.fit(Income_Spend)
    wcss.append(km.inertia_)

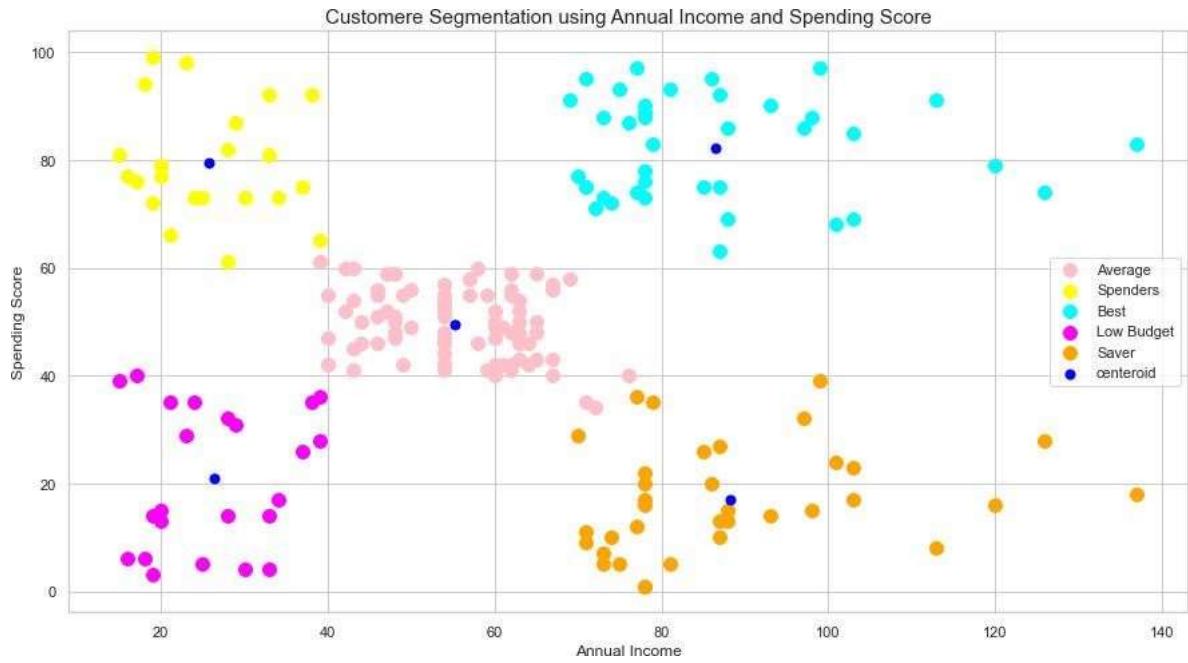
plt.figure(figsize=(15,8))
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method', fontsize = 15)
plt.xlabel('No. of Clusters', fontsize = 12)
plt.ylabel('wcss', fontsize = 12)
plt.show()
```



This elbow method show a low slope line after 5 number of cluster so we can take 5 as optimum number of cluster.

```
In [23]: km = KMeans(n_clusters = 5, init = 'k-means++', max_iter = 300, n_init = 1
y_means = km.fit_predict(Income_Spend)

plt.figure(figsize=(15,8))
plt.scatter(Income_Spend[y_means == 0, 0], Income_Spend[y_means == 0, 1],
plt.scatter(Income_Spend[y_means == 1, 0], Income_Spend[y_means == 1, 1],
plt.scatter(Income_Spend[y_means == 2, 0], Income_Spend[y_means == 2, 1],
plt.scatter(Income_Spend[y_means == 3, 0], Income_Spend[y_means == 3, 1],
plt.scatter(Income_Spend[y_means == 4, 0], Income_Spend[y_means == 4, 1],
plt.scatter(km.cluster_centers_[:,0], km.cluster_centers_[:, 1], s = 50, c
plt.legend()
plt.title('Customer Segmentation using Annual Income and Spending Score',
plt.xlabel('Annual Income', fontsize = 12)
plt.ylabel('Spending Score', fontsize = 12)
plt.show()
```



Based on the above clustering we can clearly say that there are five cluster segments present based on customers' Annual Income and Spending Score. We named them as Low budget, Spenders, Average, Savers, and Best.

Cluster based on Age and Spending Score

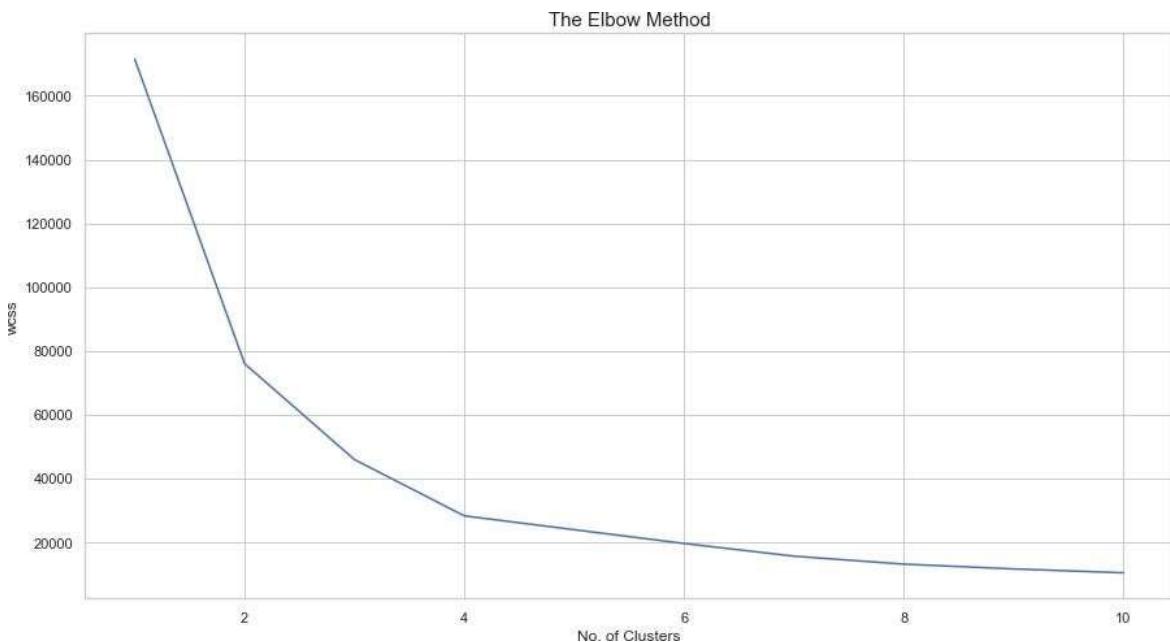
```
In [24]: plt.figure(figsize=(15,8))
sns.scatterplot(customer['Age'], customer['Spending Score (1-100)'], hue=customer['Gender'])
plt.title('Distribution of Gender based on Age and Spending Score', fontsize=14)
plt.xlabel('Age', fontsize = 12)
plt.ylabel('Spending Score', fontsize = 12)
plt.show()
```



This scatter plot show the distribution of customers based on their age, spending score and gender. And we can clearly observe that aged people don't have higher spending score.

```
In [25]: Age_Spend = customer[['Age', 'Spending Score (1-100)']].iloc[:, :].values
wcss = []
for i in range(1, 11):
    km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 1)
    km.fit(Age_Spend)
    wcss.append(km.inertia_)

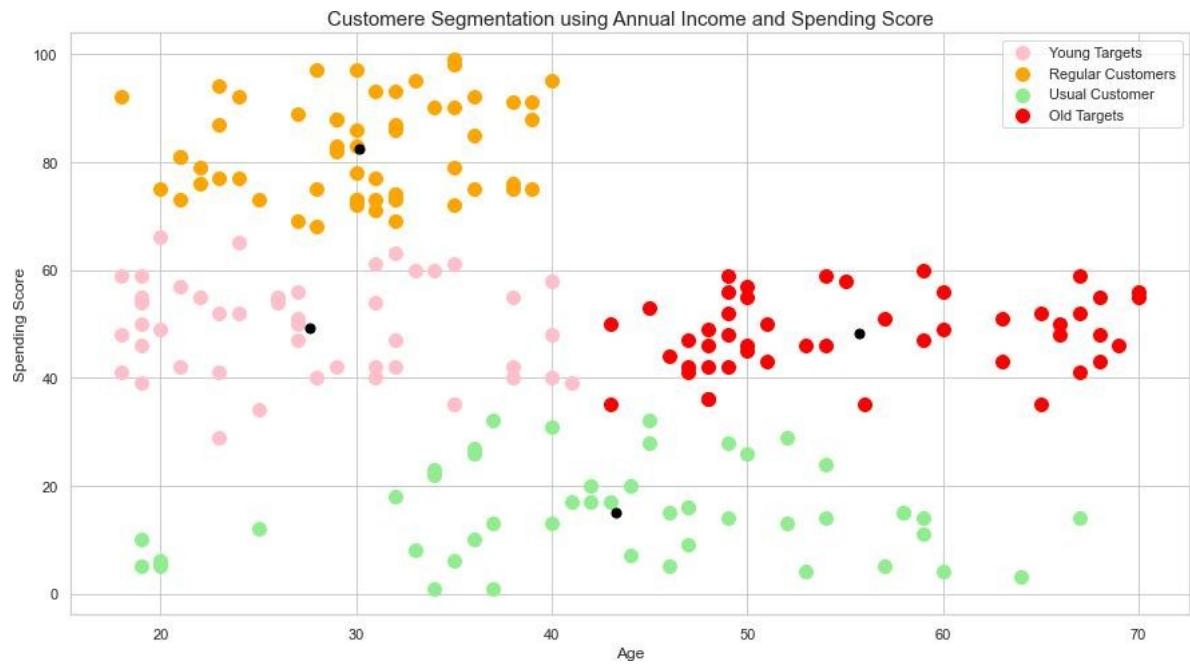
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method', fontsize = 15)
plt.xlabel('No. of Clusters', fontsize = 12)
plt.ylabel('wcss', fontsize = 12)
plt.show()
```



This elbow method show a low slope line after 4 number of cluster so we can take 4 as optimum number of cluster.

```
In [26]: km = KMeans(n_clusters = 4, init = 'k-means++', max_iter = 300, n_init = 1)
ymeans = km.fit_predict(Age_Spend)

plt.figure(figsize=(15, 8))
plt.scatter(Age_Spend[ymeans == 0, 0], Age_Spend[ymeans == 0, 1], s = 100, color = 'red')
plt.scatter(Age_Spend[ymeans == 1, 0], Age_Spend[ymeans == 1, 1], s = 100, color = 'blue')
plt.scatter(Age_Spend[ymeans == 2, 0], Age_Spend[ymeans == 2, 1], s = 100, color = 'green')
plt.scatter(Age_Spend[ymeans == 3, 0], Age_Spend[ymeans == 3, 1], s = 100, color = 'orange')
plt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s = 50, color = 'black')
plt.legend()
plt.title('Customer Segmentation using Annual Income and Spending Score', fontsize = 12)
plt.xlabel('Age', fontsize = 12)
plt.ylabel('Spending Score', fontsize = 12)
plt.show()
```



Based on the above clustering we can clearly say that there are four cluster segments present based on customers' Age and Spending Score. We named them as Regular Customers, Usual Customer, Young Targets, and Old Targets.

Conclusion

The goal of K means is to group data points into distinct non-overlapping subgroups.

Cluster 3: high spending scores and high-income; alert them with new arrivals as they are potential customer for increase in revenue.

```
##      ID Gender Age Annualincome Spendscore
## 124 124   Male  39        69        91
## 126 126 Female 31        70        77
## 128 128   Male  40        71        95
## 130 130   Male  38        71        75
## 132 132   Male  39        71        75
## 134 134 Female 31        72        71
```

Cluster 1: high income and low spending score; ask them for feedback and advertise them with new produces that might attracts them, they have the potential to convert into cluster 4.

```
##      ID Gender Age Annualincome Spendscore
## 127 127   Male  43        71        35
## 129 129   Male  59        71        11
## 131 131   Male  47        71         9
## 135 135   Male  20        73         5
## 137 137 Female 44        73         7
## 139 139   Male  19        74        10
```

Cluster 2: low income and high spending scores; can help them by providing new deals and sales offers so that despite low income they still remain loyal.

```
##      ID Gender Age Annualincome Spendscore
##  2    2   Male  21        15        81
##  4    4 Female 23        16        77
##  6    6 Female 22        17        76
##  8    8 Female 23        18        94
## 10   10 Female 30        19        72
## 12   12 Female 35        19        99
```

Cluster 3: low income and low spending score; it won't be beneficial to both the parties to target these customers.

```
##      ID Gender Age Annualincome Spendscore
##  1    1   Male  19        15        39
##  3    3 Female 20        16         6
##  5    5 Female 31        17        40
##  7    7 Female 35        18         6
##  9    9   Male  64        19         3
## 11   11   Male  67        19        14
```

References

[1] Cooil, B., Aksoy, L. & Keiningham, T. L. (2008), 'Approaches to customer segmentation', *Journal of Relationship Marketing* 6(3-4), 9–39.

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, "The Basis Of Market Segmentation" Euclidean sum-of-squares clustering," *Machine Learning*, vol. 75, pp. 245-249, 2009.

3 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, "An efficient K-means clustering algorithm," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 24, pp. 881-892, 2002.

4 Bhatnagar, Amit, Ghose, S. (2004), 'A latent class segmentation analysis of e-shoppers', *Journal of Business Research* 57, 758–767.

5 Marcus, C. (1998), 'A practical yet meaningful approach to customer segmentation approach to customer segmentation', *Journal of Consumer Marketing* 15, 494–504.