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ABSTRACT

This project focuses on the development of a Random Melody Generator using long Short-term memory
network, a type of recurrent neural network (RNN) known for its ability to capture long-range dependencies
in sequential data. In order to produce fresh and varied melodies, the suggested RMG makes use of LSTM
networks, giving musicians, composers, and music lovers a tool to experiment with new sound possibilities.
The architecture of the RMG involves training the LSTM network on a dataset of existing melodies to learn
the underlying patterns and structures. The trained model is then capable of generating original melodies by
predicting the next notes in a sequence, taking into account the contextual information from the preceding
notes. The randomness is introduced through the inherent nature of the LSTM's ability to capture intricate

musical patterns while allowing for creative deviations.

Keyword: Random Melody Generator, Long Short-Term Memory Network, Artificial Intelligence, Music

Composition, Recurrent Neural Network, Creative Al.
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Chapter 1: INTRODUCTION

In Today’s world, music production is a field where any sound can be converted into music and the
skills required to do so can be in any person. People who start their career in music sometimes are
enable to learn the concepts of music or randomly produce any melody that does not follows the
trends in the music industry. So, the authors have created a model which will give the user the ability

to produce music without the actual knowledge of the notes and music production.

1.1 Project Aim:

The aim of this project is to explore the capabilities of Long Short-Term Memory (LSTM) neural
networks in the context of music generation. The project seeks to develop a algorithm that
leverages LSTM's ability to capture sequential dependencies in data to generate diverse and
coherent musical melodies. By training the LSTM on a dataset of existing melodies, the goal is
to enable the model to learn patterns and structures inherent in musical compositions, ultimately
empowering it to produce original and aesthetically pleasing melodies autonomously. This
project aims to contribute to the intersection of artificial intelligence and music composition,
providing a creative tool for musicians and sparking insights into the potential of recurrent neural

networks in the realm of generative art.
1.2 Objective:

The primary objective of this project is to design and implement an innovative algorithmic
system that employs Long Short-Term Memory (LSTM) neural networks. The core objective is
to harness the unique capabilities of LSTM networks for understanding and generating musical
melodies. Through training on a diverse dataset of existing melodies, the model aims to learn
intricate patterns and dependencies present in music, enabling it to autonomously compose novel
and harmonious melodies. This project aspires to contribute to the field of artificial intelligence
in music composition, providing a valuable tool for musicians to explore new creative
possibilities and fostering a deeper understanding of the potential applications of recurrent neural

networks in generative art.




CHAPTER 2: LITERATURE SURVEY

Deep Learning is a field of Machine Learning which is inspired by a neural structure. These networks
extract the features automatically from the dataset and are capable of learning any non-linear

function. That’s why Neural Networks are called as Universal Functional Approximators.

Hence, Deep Learning models are the state of the art in various fields like Natural Language
Processing (NLP), Computer Vision, Speech Synthesis and so on.

There are many approaches to generate music Al

Some of them are as follows

Approach-1 music generation using WaveNet (WaveNet is a Deep Learning-based generative model
for raw audio developed by Google DeepMind).

Approach-2 music generation using long short-term memory network

Long Short-Term Memory Model, popularly known as LSTM, is a variant of Recurrent Neural
Networks (RNNs) that is capable of capturing the long-term dependencies in the input sequence.
LSTM has a wide range of applications in Sequence-to-Sequence modelling tasks like Speech

Recognition, Text Summarization, Video Classification, and so on.

In this project, I used the concept of LSTM to create a model that can generate a whole melody
starting from a certain set of notes and amplifying it again and again. The data preprocessing is the
key factor in this project as we have to extract the notes and chords from the songs so that our model
can be trained on it and by amplifying those notes and chords randomly, hence generate a whole

melody.
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CHAPTER 3: PRELIMINARY DESIGN
3.1 LIBERARIES USED

Random melody generator using LSTM uses a wide range of python libraries to perform many
import functions in this project. These are —

1. music21 — music21 is a python library toolkit that is used for computer — aided musicology.
It contains various functions and packages that are used to handle the musical data and is a
powerful and flexible toolkit for researchers, educators, and musicians interested in working
with symbolic musical data in Python. It's particularly useful for tasks such as music analysis,
manipulation, and basic composition.

2. TPython - IPython, short for "Interactive Python," is an enhanced interactive interface for the
Python programming language. It provides an interactive shell with features that go beyond
the standard Python interpreter, making it a powerful tool for interactive computing, data
exploration, and scientific computing.

3. numpy - NumPy, short for Numerical Python, is a fundamental package for scientific
computing in Python. It provides support for large, multi-dimensional arrays and matrices,
along with a collection of mathematical functions to operate on these arrays. NumPy serves
as a foundational library for numerical and scientific computing in Python and is widely used
in various fields, including data science, machine learning, physics, engineering, and more.

4. Tensorflow - TensorFlow is an open-source machine learning library developed by Google.
Widely used for building and training deep learning models. It contains wide variety of
machine learning tools and language models that are used in predictive analysis.

5. Matplotlib - Matplotlib is a popular Python data visualization library that enables the creation
of high-quality charts, plots, and figures. With a user-friendly interface, it offers extensive
customization options for creating diverse visualizations. Matplotlib is widely used in
scientific computing, data analysis, and machine learning for presenting insights in a visually
compelling manner.

6. Pandas - Pandas is a powerful data manipulation and analysis library for Python. It provides
easy-to-use data structures, such as DataFrames, for efficient handling and exploration of
structured data. With built-in functions for data cleaning, filtering, and aggregation, Pandas
simplifies the process of working with tabular data, making it essential for data scientists and
analysts.

7. OS - The “os’ library is used for interacting with the operating system, facilitating tasks such

as file operations and system-level interactions.
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8. Collections - Collections offers specialized, high-performance alternatives to built-in data
types. Featuring containers like Counter for counting elements, defaultdict for default values,
and namedtuple for creating named tuples, it enhances data handling. This module is a
valuable resource for streamlined data manipulation, providing versatile tools for efficient
programming.
9. Sklearn - Scikit-learn (sklearn) is a comprehensive machine learning library for Python. With
a simple and consistent interface, it offers a wide array of tools for classification, regression,
clustering, and more. Sklearn supports model training, evaluation, and hyperparameter tuning,
making it a go-to library for building and deploying machine learning model.
3.2 Data collection and preprocessing
In this project I have used the data that was available on the Kaggle.com as classical music MIDI.
In this dataset there were samples based only on classical piano.
3.2.1 About the dataset:
This dataset consists of classical piano MIDI files of famous composers and in this folder, I have
used the folder “Albeniz” to train my model on. The folder has 14 midi files that comprise of

different melody samples created on piano.

w OneDrive > HP-Personal > Documents > Vsemesterdocs > minorproject > Dataset-4 > albeniz Search albeniz Q

N

Sort O View () Details
Qalb_esp3 @ alb_espd @ alb_espS @ alb_espb @ alb_sel alb_se? L] se3 4 alb_seS Qalb_seb

P - Personal

alb_esp1
-
. EN
-

©aib_se?
-
-

Figure 3.2.1
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3.2.2 Loading data:
First, I have set a midi path where all the files of the dataset are stored and I have appended the
address to all the files of that folder. Then I have appended the resultant string to a songs list.

midi dataset path = r"Dataset-4/albeniz”

songs = []

for path, subdirs, files in os.walk(midi dataset path):
print(f"path : {path}")
print(f"subdirs : {subdirs}")
print(f"files : {files}")

for file in files:
if file[-3:] == "mid":
song = converter.parse(os.path.join(path, file))
songs.append(song)

print(songs)

Figure 3.2.2
3.2.3 extracting notes and chords from the songs
Now I define a function called extract_notes() that takes a list of music files (files) as input
and extracts musical notes and chords from each file using the music21 library. It iterates through
the parts of each instrument in the music, recursively extracts notes and chords, and appends them
to the notes list. The resulting corpus is a list of string representations of pitches. The code then

prints the total number of notes in the Bach dataset.
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def extract notes(files):
notes = []
pick = None
for j in files:
song = instrument.partitionByInstrument(j)
for part in song.parts:
pick = part.recurse()
for element in pick:
if isinstance(element, note.Note):
notes.append(str(element.pitch))
elif isinstance(element, chord.Chord):
notes.append(".".join{étb(n) for n in element.normalOrder))
return notes

corpus = extract notes(songs)
print(f"total notes in the bach dataset : {len(corpus)}")

Figure 3.2.3

The provided Python code defines a function named chords_n_notes() that takes a list of string
representations of pitches (sample) as input and converts them into a musical stream using the
music21 library. It iterates through the input, distinguishing between chords (indicated by the
presence of a period or digits) and individual notes. For chords, it splits the string, creates note.Note
instances for each note in the chord, assembles them into a chord.Chord, and appends the chord to
the melody. For individual notes, it directly creates a note.Note and appends it to the melody. The

resulting musical stream is then returned.

The code also demonstrates the function's usage by applying it to the first 50 elements of the corpus

and storing the result in the variable x.
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def chords n notes(sample):
melody = []
offset = 0

for i in sample:
if 0" an 1) o (@adsdigit())s
chord notes = i.split(".")
print(chord notes)
notes = []

for j in chord notes:
inst_note = int(j)
note_sam = note.Note(inst_note)
notes.appena(hbte_sam)
chord_sam = chord.Chord(notes)
chord_sam.offset'= offset
melody.append(chord _sam)

else:
note_sam = note.Note(1i)

note sam.offset = offset
melody.append(note sam)

offset += 1
melody_stream = stream.Stream(melody)
return melody_ stream

x = chords n notes(corpus[:50])

Figure 3.2.4

It first counts the occurrences of each unique musical note in the corpus. The code then prints

information about the corpus, including the total number of unique notes, the average recurrence of

a note, the most frequent note and its count, and the least frequent note and its count.
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count_num = Counter(corpus)

print(f"total unique notes in the corpus : {len(count_num)}")
notes = list(count num.keys())

recurrence = list(count num.values()) |,

def avg(lst):
return sum(lst)/len(1lst)

print("Average recurrenc for a note in Corpus:", avg(recurrence))
print("Most frequent note in Corpus appeared:", max(recurrence), "times")
print("Least frequent note in Corpus appeared:", min(recurrence), "time")

Figure 3.2.5
The provided Python code utilizes the matplotlib library to create a histogram visualizing the
frequency distribution of notes in the given corpus. It sets up a figure with a specific size and
facecolor, defines bins for the histogram using np.arange, and then creates the histogram using
plt.hist. Additionally, a vertical line is added at the x-value of 100 using plt.axvline. The title, xlabel,
and ylabel are set to label the plot appropriately, and finally, the plot is displayed using plt.show().

The color scheme involves shades of blue for the bars and a pinkish color for the vertical line.

plt.figure(figsize=(18,3),facecolor="#97BACB")

bins = np.arange(9, (max(recurrence)), 50)
plt.hist(recurrence, bins=bins, color="#97BACB")
plt.axvline(x=100,color="#DBACC1")

plt.title("Frequency Distribution Of Notes In The Corpus™)
plt.xlabel("Frequency Of Chords in Corpus")
plt.ylabel("Number Of Chords")

plt.show()

Figure 3.2.6
The provided Python code identifies and collects musical notes that occurred less than 50 times in
the given corpus. It iterates through the items in the count num dictionary, where each item
represents a unique note and its corresponding frequency in the corpus. If the frequency (value) is
less than 50, the note (key) is considered rare, and it is appended to the rare notes list. The code then

prints the total number of notes that occurred less than 50 times in the corpus.
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rare _notes = []

for index, (key, value) in enumerate(count num.items()):
if value < 50:
m = key
rare_notes.append(m)

print(f"total number of notes that occured less than 50 times : {len(rare _notes)}")

Figure 3.2.7
The code below removes musical elements from the corpus that are identified as rare notes based on
the rare_notes list. It iterates through each element in the corpus and removes elements that are found
in the rare notes list. After this filtering process, the code prints the length of the updated corpus.

Finally, it generates a sorted list of unique symbols (symb) present in the modified corpus.

for element in corpus:
if element in rare_notes:
corpus.remove(element)

print(f"length of corpus after eliminating rare notes : {len(corpus)}")

symb = sorted(list(set(corpus)))
print(symb)

Figure 3.2.8
The code below creates sequences of length 40 from the corpus for the purpose of generating training
data for a machine learning model. It iterates through the range of indices in the corpus, with each
iteration forming a sequence of length 40 (features) and its corresponding target element (target). The
sequences are converted into numerical representations using a mapping dictionary. The resulting
features and targets are stored in the list’s features and targets, respectively. The code then prints the

total number of sequences generated from the corpus.

17




length = 40

features = []

targets = [] »

for i in range(@ , 1 corpus - length, 1):
feature = corpué[i TiE length]
target = corpus[i + length]
features.append([mapping[j] for j in feature])
targets.append(mappihg{target])

1 data points = len(targets)
print(f"total number of sequences in the corpus : {1 data points}")

Figure 3.2.9

The provided Python code prepares the features (X) and targets (y) for training a neural network
using the TensorFlow library. It uses NumPy to reshape the features list into a three-dimensional
array with dimensions (1_data_points, length, 1), where length represents the sequence length, and 1
signifies a single feature per element. The features are then normalized by dividing by the total
number of unique symbols (I symb). The targets are converted into categorical format using

tensorflow.keras.utils.to _categorical.

x
Il

(np.reshape(features, (l_daté_points, length, 1)))/ float(l_symb)
tensorflow.keras.utils.to categorical(targets)

ke
I
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Chapter 4: FINAL ANALYSIS AND DESIGN

4.1 splitting the dataset for training and loss correction

The provided Python code uses the train_test split function from scikit-learn to split the dataset into
training and testing sets. It assigns the features (X) and targets (y) to training and testing sets,
denoted as x_train, x_test, y train, and y_test. The test size parameter is set to 0.2, indicating that
20% of the data will be used for testing, and the random_ state parameter ensures reproducibility by

fixing the random seed.

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

4.2 Implementing LSTM model

The provided Python code defines a sequential model using Keras (assumed to be from
TensorFlow). The model architecture consists of two LSTM layers with 512 and 256 units,
respectively. The first LSTM layer is configured to return sequences, and a dropout layer with a
dropout rate of 0.1 is added after it. The second LSTM layer is followed by a dense layer with
256 units and another dropout layer. The final dense layer has units equal to the number of

classes in the target (y.shape[1]) and uses the softmax activation function.

The model is compiled using the Adamax optimizer with a learning rate of 0.01 and categorical

cross-entropy as the loss function.

model = Sequential()

model.add(LSTM(512, input shape = (X.shape[1], X.shape[2]), return sequences = True))
model.add(Dropout(0.1))

model.add(LSTM(256))

model.add(Dense(256))

model.add(Dropout(0.1))

model.add(Dense(y.shape[1], activation = "softmax"))

model.compile(
optimizer = Adamax(learning rate = 0.01),
loss = 'categorical crossentropy’,

Figure 4.2.1
The provided Python code trains the defined Keras model using the fit method. It uses the

training data X _train and y _train with a batch size of 256 and trains the model for 200 epochs.
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model.fit(x train, y train, batch _size = 256, epochs = 200)

The above LSTM model train on 200 epochs till the loss is minimized.

Epoch 1/200

49/49 [==============================] - 114s 2s/step - loss: 4.5861
Epoch 2/200

49/49 [==============================] - 134s 3s/step - loss: 4.3608
Epoch 3/200

49/49 [==============================] - 134s 3s/step - loss: 4.3517
Epoch 4/200

49/49 [==============================] - 138s 3s/step - loss: 4.3470
Epoch 5/200

49/49 [==============================] - 147s 3s/step - loss: 4.3472
Epoch 6/200

49/49 [==============================] - 1525 3s/step - loss: 4.3455
Epoch 7/200

49/49 [==============================] - 154s 3s/step - loss: 4.3407
Epoch 8/200

49/49 [==============================] - 1555 3s/step - loss: 4.3417
Epoch 9/200

49/49 [==============================] - 1555 3s/step - loss: 4.3392
Epoch 10/200

49/49 [==============================] - 1505 3s/step - loss: 4.3429
Epoch 11/200

49/49 [==============================] - 150s 3s/step - loss: 4.3415
Epoch 12/200

49/49 [==============================] - 127s 3s/step - loss: 4.3385
Epoch 13/200

49/49 [==============================] - 71s 1s/step - loss: 4.3378
Epoch 14/200

49/49 [==============================] - 74s 2s/step - loss: 4.3398
Epoch 15/200

49/49 [==============================] - 73s 1s/step - loss: 4.3378
Epoch 16/200

49/49 [==============================] - 73s 1s/step - loss: 4.3382

Figure 4.2.2

The provided Python code calls the Melody Generator function with a specified Note Count of
75. It initializes the generation process with a random seed from the test set (x_test), predicts the
next note in the sequence iteratively, and diversifies the predictions using a temperature
parameter. The generated notes are then converted back to their original representations using a

reverse mapping.

The resulting values are stored in the variable’s music notes and melody. music_notes is a list of

the generated notes, and melody is a musical stream created from these notes.
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def Malody_Generator(Note_Count):

seed = x_test[np.random.randint(@,len(x_test)-1)]

Music = ""

Notes Generated=[]

for i in range(Note Count):
seed = seed.reshape(1,length,1)
prediction = model.predict(seed, verbose=0)[@]
prediction = np.log(prediction) / 1.0 #diversity
exp_preds = np.exp(predictionﬂ
prediction = exp preds / np.sum(exp_preds)
index = np.argmax(prediction)
index_N = index/ float(l_symb)
Notes_Generated.append(ihdex)
Music = [reversed mapping[char] for char in Notes_Generated]
seed np.ihééff(ééééfé]}len(seed[@]),index_N)
seed = seed[1:]

Melody = chords _n_notes(Music)
Melody midi = stream.Stream(Melody)
return Music,Melody midi

music_notes, melody = Malody Generator(75)

Figure 4.2.3

4.3 Storing the random melody generated

melody.write('midi', "melody generated using lstm-3.mid")

The above code writes the generated melody to a MIDI file named 'melody generated using_lstm-
3.mid". The write method is applied to the melody object, specifying the output format as MIDI and
providing the desired filename for the generated MIDI file.

The below image shows the melody generated in the folder whose path is given

@ experiement-2 @ Melody_Gener @ melody_gener @ melody_gener @ melody_gener
ated ated_using_lst ated_using_|st ated_using_lst
m m-2 m-3

Figure 4.2.4
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4.4 Application:
The application of the provided code lies in generating melodies using a Long Short-Term
Memory (LSTM) neural network trained on a music corpus. This has potential applications in
music composition, where Al can assist or inspire composers by generating new musical
sequences based on learned patterns from existing compositions.

4.5 Problems Faced:

1.

Data Preparation: The code assumes the availability of a well-prepared music dataset
(corpus). Creating such datasets with high-quality and diverse musical content can be
challenging.

Model Training: The performance of the generated melodies heavily depends on the
quality and quantity of the training data, and tuning hyperparameters is crucial for optimal
results.

Sequence Generation: Balancing creativity and structure in generated sequences can be
challenging. Adjusting parameters like temperature during sequence generation can impact
the diversity of the generated melodies.

4.6 Limitations:

I.

Musical Quality: While the model can learn patterns, generating musically coherent and
aesthetically pleasing melodies is a complex task. The generated sequences may lack the
nuanced creativity of a human composer.

Dependency on Training Data: The model's effectiveness is highly dependent on the
quality and representativeness of the training dataset. Biases and limitations in the dataset
may be reflected in the generated melodies.

Overfitting: If the model is trained on a limited dataset, it may memorize specific
sequences rather than learning general musical patterns, leading to overfitting.

4.7 Conclusion:

The code demonstrates the use of LSTM networks for music generation, showcasing the potential
of Al in creative tasks. Despite facing challenges related to data quality, training, and sequence
generation, the approach provides a foundation for exploring Al's role in music composition.
Continued research and refinement of models, coupled with diverse and comprehensive datasets,
can contribute to further advancements in Al-generated music.
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