
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

NAAC Accredited with A++ Grade

Skill Based Mini Project Report

on

PROBLEM SOLVING AND PROGRAMMING (3280122)

SUBMITTED BY

Shalini Varfa & Yuvraj Shukla

0901AM231059 & 0901AM231077

I semester

Artificial Intelligence and Machine Learning

SUBMITTED TO

Dr. Mir Shahnawaz Ahmad

Assistant Professor

CENTRE FOR ARTIFICIAL INTELLIGENCE

Madhav Institute of Technology & Science

Gwalior - 474005 (MP) est. 1957

Session: 2023-24

DECLARATION

I hereby declare that the mini skill-based project for the course

Problem Solving and Programming (3280122) is being submitted in

the partial fulfilment of the requirement for the award of Bachelor of

Technology in Artificial Intelligence and Machine Learning.

All the information in this document has been obtained and presented

in accordance with academic rule and ethical conduct.

Date :

Place: Gwalior

Shalini Varfa&

Yuvraj Shukla

0901AM23017709

01AM2301770901

AM230177

1} Create a simple banking system that allows users to open accounts, deposit and

withdraw money,

and check their account balances.

#include <iostream>
#include <iomanip>
#include <map>

using namespace std;

class Bank {
private:
 map<int, double> accounts;
 int accountNumberCounter;

public:
 Bank() : accountNumberCounter(1000) {}

 // Open a new account
 void openAccount() {
 accounts[accountNumberCounter] = 0.0;
 cout << "Account created successfully. Your account number is: " << accountNumberCounter <<
endl;
 accountNumberCounter++;
 }

 // Deposit money into an account
 void deposit(int accountNumber, double amount) {
 if (accounts.find(accountNumber) != accounts.end()) {
 accounts[accountNumber] += amount;
 cout << "Deposit successful. New balance: $" << fixed << setprecision(2) <<
accounts[accountNumber] << endl;
 } else {
 cout << "Account not found." << endl;
 }
 }

 // Withdraw money from an account
 void withdraw(int accountNumber, double amount) {
 if (accounts.find(accountNumber) != accounts.end()) {
 if (accounts[accountNumber] >= amount) {
 accounts[accountNumber] -= amount;
 cout << "Withdrawal successful. New balance: $" << fixed << setprecision(2) <<
accounts[accountNumber] << endl;
 } else {
 cout << "Insufficient funds." << endl;
 }
 } else {
 cout << "Account not found." << endl;

 }
 }

 // Check account balance
 void checkBalance(int accountNumber) {
 if (accounts.find(accountNumber) != accounts.end()) {
 cout << "Account balance: $" << fixed << setprecision(2) << accounts[accountNumber] <<
endl;
 } else {
 cout << "Account not found." << endl;
 }
 }
};

int main() {
 Bank bank;
 int choice;
 int accountNumber;
 double amount;

 do {
 cout << "\nBanking System Menu:\n";
 cout << "1. Open Account\n";
 cout << "2. Deposit\n";
 cout << "3. Withdraw\n";
 cout << "4. Check Balance\n";
 cout << "5. Exit\n";
 cout << "Enter your choice: ";
 cin >> choice;

 switch (choice) {
 case 1:
 bank.openAccount();
 break;
 case 2:
 cout << "Enter account number: ";
 cin >> accountNumber;
 cout << "Enter amount to deposit: $";
 cin >> amount;
 bank.deposit(accountNumber, amount);
 break;
 case 3:
 cout << "Enter account number: ";
 cin >> accountNumber;
 cout << "Enter amount to withdraw: $";
 cin >> amount;
 bank.withdraw(accountNumber, amount);
 break;
 case 4:
 cout << "Enter account number: ";
 cin >> accountNumber;

 bank.checkBalance(accountNumber);
 break;
 case 5:
 cout << "Exiting the program. Thank you!\n";
 break;
 default:
 cout << "Invalid choice. Please try again.\n";
 }

 } while (choice != 5);

 return 0;
}

Build a two-player console-based Tic-Tac-Toe game where players

take turns marking a 3x3 grid.

#include <iostream>

using namespace std;

// Function to print the Tic-Tac-Toe board
void printBoard(char board[3][3]) {
 cout << " 1 2 3\n";
 for (int i = 0; i < 3; ++i) {
 cout << i + 1 << " ";
 for (int j = 0; j < 3; ++j) {
 cout << board[i][j] << " ";
 }
 cout << endl;
 }
 cout << endl;
}

// Function to check if a player has won
bool checkWin(char board[3][3], char player) {
 // Check rows and columns
 for (int i = 0; i < 3; ++i) {
 if ((board[i][0] == player && board[i][1] == player && board[i][2] == player) ||
 (board[0][i] == player && board[1][i] == player && board[2][i] == player)) {
 return true;
 }
 }

 // Check diagonals
 if ((board[0][0] == player && board[1][1] == player && board[2][2] == player) ||
 (board[0][2] == player && board[1][1] == player && board[2][0] == player)) {
 return true;
 }

 return false;
}

// Function to check if the board is full (a tie)
bool checkTie(char board[3][3]) {
 for (int i = 0; i < 3; ++i) {
 for (int j = 0; j < 3; ++j) {
 if (board[i][j] == ' ') {
 return false; // Empty space found, game is not a tie
 }
 }
 }
 return true; // Board is full, game is a tie

}

int main() {
 char board[3][3] = {{' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '}};
 char currentPlayer = 'X';

 while (true) {
 printBoard(board);

 // Get player move
 int row, col;
 cout << "Player " << currentPlayer << ", enter your move (row and column): ";
 cin >> row >> col;

 // Validate the move
 if (row < 1 || row > 3 || col < 1 || col > 3 || board[row - 1][col - 1] != ' ') {
 cout << "Invalid move. Try again.\n";
 continue;
 }

 // Make the move
 board[row - 1][col - 1] = currentPlayer;

 // Check for a win
 if (checkWin(board, currentPlayer)) {
 printBoard(board);
 cout << "Player " << currentPlayer << " wins!\n";
 break;
 }

 // Check for a tie
 if (checkTie(board)) {
 printBoard(board);
 cout << "It's a tie!\n";
 break;
 }

 // Switch to the other player
 currentPlayer = (currentPlayer == 'X') ? 'O' : 'X';
 }

 return 0;
}

 Develop an address book application to store and manage contacts' names,

phone numbers, and addresses.

#include <iostream>
#include <string>

using namespace std;

const int MAX_CONTACTS = 100;

struct Contact {
 string name;
 string phoneNumber;
 string address;
};

class AddressBook {
private:
 Contact contacts[MAX_CONTACTS];
 int contactCount;

public:
 AddressBook() : contactCount(0) {}

 void addContact(const Contact& contact) {
 if (contactCount < MAX_CONTACTS) {
 contacts[contactCount++] = contact;
 cout << "Contact added successfully." << endl;
 } else {
 cout << "Address book is full. Cannot add more contacts." << endl;
 }
 }

 void displayContacts() const {
 if (contactCount == 0) {
 cout << "Address book is empty." << endl;
 return;
 }

 cout << "Contacts:" << endl;
 for (int i = 0; i < contactCount; ++i) {
 cout << "Name: " << contacts[i].name << endl;
 cout << "Phone: " << contacts[i].phoneNumber << endl;
 cout << "Address: " << contacts[i].address << endl << endl;
 }
 }

 void searchContact(const string& searchTerm) const {
 bool found = false;

 for (int i = 0; i < contactCount; ++i) {
 if (contacts[i].name.find(searchTerm) != string::npos ||
 contacts[i].phoneNumber.find(searchTerm) != string::npos ||
 contacts[i].address.find(searchTerm) != string::npos) {
 cout << "Name: " << contacts[i].name << endl;
 cout << "Phone: " << contacts[i].phoneNumber << endl;
 cout << "Address: " << contacts[i].address << endl << endl;
 found = true;
 }
 }

 if (!found) {
 cout << "Contact not found." << endl;
 }
 }
};

int main() {
 AddressBook addressBook;

 while (true) {
 cout << "1. Add Contact" << endl;
 cout << "2. Display Contacts" << endl;
 cout << "3. Search Contact" << endl;
 cout << "4. Exit" << endl;
 cout << "Enter your choice: ";

 int choice;
 cin >> choice;

 switch (choice) {
 case 1: {
 Contact newContact;
 cin.ignore();

 cout << "Enter Name: ";
 getline(cin, newContact.name);

 cout << "Enter Phone Number: ";
 getline(cin, newContact.phoneNumber);

 cout << "Enter Address: ";
 getline(cin, newContact.address);

 addressBook.addContact(newContact);
 break;
 }
 case 2:
 addressBook.displayContacts();
 break;
 case 3: {

 cin.ignore();

 cout << "Enter search term: ";
 string searchTerm;
 getline(cin, searchTerm);

 addressBook.searchContact(searchTerm);
 break;
 }
 case 4:
 cout << "Exiting the address book application. Goodbye!" << endl;
 return 0;
 default:
 cout << "Invalid choice. Please enter a valid option." << endl;
 }
 }

 return 0;
}

Create a program to manage student records, including information like

name, ID, and grades. Users can add, update, and view student data.

#include <iostream>
#include <string>

using namespace std;

const int MAX_STUDENTS = 100;

struct Student {
 string name;
 int id;
 float grades;
};

class StudentManager {
private:
 Student students[MAX_STUDENTS];
 int studentCount;

public:
 StudentManager() : studentCount(0) {}

 void addStudent(const Student& student) {
 if (studentCount < MAX_STUDENTS) {
 students[studentCount++] = student;
 cout << "Student added successfully." << endl;
 } else {
 cout << "Maximum number of students reached. Cannot add more students." << endl;
 }
 }

 void updateStudent(int studentId, const Student& updatedStudent) {
 for (int i = 0; i < studentCount; ++i) {
 if (students[i].id == studentId) {
 students[i] = updatedStudent;
 cout << "Student information updated successfully." << endl;
 return;
 }
 }

 cout << "Student with ID " << studentId << " not found." << endl;
 }

 void displayStudents() const {

 if (studentCount == 0) {
 cout << "No student records available." << endl;
 return;
 }

 cout << "Student Records:" << endl;
 for (int i = 0; i < studentCount; ++i) {
 cout << "ID: " << students[i].id << endl;
 cout << "Name: " << students[i].name << endl;
 cout << "Grades: " << students[i].grades << endl << endl;
 }
 }
};

int main() {
 StudentManager studentManager;

 while (true) {
 cout << "1. Add Student" << endl;
 cout << "2. Update Student" << endl;
 cout << "3. View Students" << endl;
 cout << "4. Exit" << endl;
 cout << "Enter your choice: ";

 int choice;
 cin >> choice;

 switch (choice) {
 case 1: {
 Student newStudent;
 cin.ignore(); // Clear the newline character from the buffer

 cout << "Enter Name: ";
 getline(cin, newStudent.name);

 cout << "Enter ID: ";
 cin >> newStudent.id;

 cout << "Enter Grades: ";
 cin >> newStudent.grades;

 studentManager.addStudent(newStudent);
 break;
 }
 case 2: {
 int studentId;
 cout << "Enter the ID of the student to update: ";
 cin >> studentId;

 Student updatedStudent;
 cin.ignore();

 cout << "Enter Updated Name: ";
 getline(cin, updatedStudent.name);

 cout << "Enter Updated Grades: ";
 cin >> updatedStudent.grades;

 studentManager.updateStudent(studentId, updatedStudent);
 break;
 }
 case 3:
 studentManager.displayStudents();
 break;
 case 4:
 cout << "Exiting the student records management program. Goodbye!" << endl;
 return 0;
 default:
 cout << "Invalid choice. Please enter a valid option." << endl;
 }
 }

 return 0;
}

