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1} Create a simple banking system that allows users to open accounts, deposit and 

withdraw money, 

and check their account balances.  

 
  
#include <iostream> 
#include <iomanip> 
#include <map> 
 
using namespace std; 
 
class Bank { 
private: 
    map<int, double> accounts; 
    int accountNumberCounter; 
 
public: 
    Bank() : accountNumberCounter(1000) {} 
 
    // Open a new account 
    void openAccount() { 
        accounts[accountNumberCounter] = 0.0; 
        cout << "Account created successfully. Your account number is: " << accountNumberCounter << 
endl; 
        accountNumberCounter++; 
    } 
 
    // Deposit money into an account 
    void deposit(int accountNumber, double amount) { 
        if (accounts.find(accountNumber) != accounts.end()) { 
            accounts[accountNumber] += amount; 
            cout << "Deposit successful. New balance: $" << fixed << setprecision(2) << 
accounts[accountNumber] << endl; 
        } else { 
            cout << "Account not found." << endl; 
        } 
    } 
 
    // Withdraw money from an account 
    void withdraw(int accountNumber, double amount) { 
        if (accounts.find(accountNumber) != accounts.end()) { 
            if (accounts[accountNumber] >= amount) { 
                accounts[accountNumber] -= amount; 
                cout << "Withdrawal successful. New balance: $" << fixed << setprecision(2) << 
accounts[accountNumber] << endl; 
            } else { 
                cout << "Insufficient funds." << endl; 
            } 
        } else { 
            cout << "Account not found." << endl; 



        } 
    } 
 
    // Check account balance 
    void checkBalance(int accountNumber) { 
        if (accounts.find(accountNumber) != accounts.end()) { 
            cout << "Account balance: $" << fixed << setprecision(2) << accounts[accountNumber] << 
endl; 
        } else { 
            cout << "Account not found." << endl; 
        } 
    } 
}; 
 
int main() { 
    Bank bank; 
    int choice; 
    int accountNumber; 
    double amount; 
 
    do { 
        cout << "\nBanking System Menu:\n"; 
        cout << "1. Open Account\n"; 
        cout << "2. Deposit\n"; 
        cout << "3. Withdraw\n"; 
        cout << "4. Check Balance\n"; 
        cout << "5. Exit\n"; 
        cout << "Enter your choice: "; 
        cin >> choice; 
 
        switch (choice) { 
            case 1: 
                bank.openAccount(); 
                break; 
            case 2: 
                cout << "Enter account number: "; 
                cin >> accountNumber; 
                cout << "Enter amount to deposit: $"; 
                cin >> amount; 
                bank.deposit(accountNumber, amount); 
                break; 
            case 3: 
                cout << "Enter account number: "; 
                cin >> accountNumber; 
                cout << "Enter amount to withdraw: $"; 
                cin >> amount; 
                bank.withdraw(accountNumber, amount); 
                break; 
            case 4: 
                cout << "Enter account number: "; 
                cin >> accountNumber; 



                bank.checkBalance(accountNumber); 
                break; 
            case 5: 
                cout << "Exiting the program. Thank you!\n"; 
                break; 
            default: 
                cout << "Invalid choice. Please try again.\n"; 
        } 
 
    } while (choice != 5); 
 
    return 0; 
} 
  



Build a two-player console-based Tic-Tac-Toe game where players 

take turns marking a 3x3 grid. 

 
 
#include <iostream> 
 
using namespace std; 
 
// Function to print the Tic-Tac-Toe board 
void printBoard(char board[3][3]) { 
    cout << "  1 2 3\n"; 
    for (int i = 0; i < 3; ++i) { 
        cout << i + 1 << " "; 
        for (int j = 0; j < 3; ++j) { 
            cout << board[i][j] << " "; 
        } 
        cout << endl; 
    } 
    cout << endl; 
} 
 
// Function to check if a player has won 
bool checkWin(char board[3][3], char player) { 
    // Check rows and columns 
    for (int i = 0; i < 3; ++i) { 
        if ((board[i][0] == player && board[i][1] == player && board[i][2] == player) || 
            (board[0][i] == player && board[1][i] == player && board[2][i] == player)) { 
            return true; 
        } 
    } 
 
    // Check diagonals 
    if ((board[0][0] == player && board[1][1] == player && board[2][2] == player) || 
        (board[0][2] == player && board[1][1] == player && board[2][0] == player)) { 
        return true; 
    } 
 
    return false; 
} 
 
// Function to check if the board is full (a tie) 
bool checkTie(char board[3][3]) { 
    for (int i = 0; i < 3; ++i) { 
        for (int j = 0; j < 3; ++j) { 
            if (board[i][j] == ' ') { 
                return false; // Empty space found, game is not a tie 
            } 
        } 
    } 
    return true; // Board is full, game is a tie 



} 
 
int main() { 
    char board[3][3] = {{' ', ' ', ' '}, {' ', ' ', ' '}, {' ', ' ', ' '}}; 
    char currentPlayer = 'X'; 
 
    while (true) { 
        printBoard(board); 
 
        // Get player move 
        int row, col; 
        cout << "Player " << currentPlayer << ", enter your move (row and column): "; 
        cin >> row >> col; 
 
        // Validate the move 
        if (row < 1 || row > 3 || col < 1 || col > 3 || board[row - 1][col - 1] != ' ') { 
            cout << "Invalid move. Try again.\n"; 
            continue; 
        } 
 
        // Make the move 
        board[row - 1][col - 1] = currentPlayer; 
 
        // Check for a win 
        if (checkWin(board, currentPlayer)) { 
            printBoard(board); 
            cout << "Player " << currentPlayer << " wins!\n"; 
            break; 
        } 
 
        // Check for a tie 
        if (checkTie(board)) { 
            printBoard(board); 
            cout << "It's a tie!\n"; 
            break; 
        } 
 
        // Switch to the other player 
        currentPlayer = (currentPlayer == 'X') ? 'O' : 'X'; 
    } 
 
    return 0; 
} 
  



 Develop an address book application to store and manage contacts' names, 

phone numbers, and addresses. 

 
 
#include <iostream> 
#include <string> 
 
using namespace std; 
 
const int MAX_CONTACTS = 100;   
 
struct Contact { 
    string name; 
    string phoneNumber; 
    string address; 
}; 
 
class AddressBook { 
private: 
    Contact contacts[MAX_CONTACTS]; 
    int contactCount; 
 
public: 
    AddressBook() : contactCount(0) {} 
 
    void addContact(const Contact& contact) { 
        if (contactCount < MAX_CONTACTS) { 
            contacts[contactCount++] = contact; 
            cout << "Contact added successfully." << endl; 
        } else { 
            cout << "Address book is full. Cannot add more contacts." << endl; 
        } 
    } 
 
    void displayContacts() const { 
        if (contactCount == 0) { 
            cout << "Address book is empty." << endl; 
            return; 
        } 
 
        cout << "Contacts:" << endl; 
        for (int i = 0; i < contactCount; ++i) { 
            cout << "Name: " << contacts[i].name << endl; 
            cout << "Phone: " << contacts[i].phoneNumber << endl; 
            cout << "Address: " << contacts[i].address << endl << endl; 
        } 
    } 
 
    void searchContact(const string& searchTerm) const { 
        bool found = false; 
 



        for (int i = 0; i < contactCount; ++i) { 
            if (contacts[i].name.find(searchTerm) != string::npos || 
                contacts[i].phoneNumber.find(searchTerm) != string::npos || 
                contacts[i].address.find(searchTerm) != string::npos) { 
                cout << "Name: " << contacts[i].name << endl; 
                cout << "Phone: " << contacts[i].phoneNumber << endl; 
                cout << "Address: " << contacts[i].address << endl << endl; 
                found = true; 
            } 
        } 
 
        if (!found) { 
            cout << "Contact not found." << endl; 
        } 
    } 
}; 
 
int main() { 
    AddressBook addressBook; 
 
    while (true) { 
        cout << "1. Add Contact" << endl; 
        cout << "2. Display Contacts" << endl; 
        cout << "3. Search Contact" << endl; 
        cout << "4. Exit" << endl; 
        cout << "Enter your choice: "; 
 
        int choice; 
        cin >> choice; 
 
        switch (choice) { 
            case 1: { 
                Contact newContact; 
                cin.ignore();   
 
                cout << "Enter Name: "; 
                getline(cin, newContact.name); 
 
                cout << "Enter Phone Number: "; 
                getline(cin, newContact.phoneNumber); 
 
                cout << "Enter Address: "; 
                getline(cin, newContact.address); 
 
                addressBook.addContact(newContact); 
                break; 
            } 
            case 2: 
                addressBook.displayContacts(); 
                break; 
            case 3: { 



                cin.ignore();   
 
                cout << "Enter search term: "; 
                string searchTerm; 
                getline(cin, searchTerm); 
 
                addressBook.searchContact(searchTerm); 
                break; 
            } 
            case 4: 
                cout << "Exiting the address book application. Goodbye!" << endl; 
                return 0; 
            default: 
                cout << "Invalid choice. Please enter a valid option." << endl; 
        } 
    } 
 
    return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Create a program to manage student records, including information like 

name, ID, and grades. Users can add, update, and view student data. 

 
 
 
 
 
#include <iostream> 
#include <string> 
 
using namespace std; 
 
const int MAX_STUDENTS = 100;  
 
struct Student { 
    string name; 
    int id; 
    float grades; 
}; 
 
class StudentManager { 
private: 
    Student students[MAX_STUDENTS]; 
    int studentCount; 
 
public: 
    StudentManager() : studentCount(0) {} 
 
    void addStudent(const Student& student) { 
        if (studentCount < MAX_STUDENTS) { 
            students[studentCount++] = student; 
            cout << "Student added successfully." << endl; 
        } else { 
            cout << "Maximum number of students reached. Cannot add more students." << endl; 
        } 
    } 
 
    void updateStudent(int studentId, const Student& updatedStudent) { 
        for (int i = 0; i < studentCount; ++i) { 
            if (students[i].id == studentId) { 
                students[i] = updatedStudent; 
                cout << "Student information updated successfully." << endl; 
                return; 
            } 
        } 
 
        cout << "Student with ID " << studentId << " not found." << endl; 
    } 
 
    void displayStudents() const { 



        if (studentCount == 0) { 
            cout << "No student records available." << endl; 
            return; 
        } 
 
        cout << "Student Records:" << endl; 
        for (int i = 0; i < studentCount; ++i) { 
            cout << "ID: " << students[i].id << endl; 
            cout << "Name: " << students[i].name << endl; 
            cout << "Grades: " << students[i].grades << endl << endl; 
        } 
    } 
}; 
 
int main() { 
    StudentManager studentManager; 
 
    while (true) { 
        cout << "1. Add Student" << endl; 
        cout << "2. Update Student" << endl; 
        cout << "3. View Students" << endl; 
        cout << "4. Exit" << endl; 
        cout << "Enter your choice: "; 
 
        int choice; 
        cin >> choice; 
 
        switch (choice) { 
            case 1: { 
                Student newStudent; 
                cin.ignore(); // Clear the newline character from the buffer 
 
                cout << "Enter Name: "; 
                getline(cin, newStudent.name); 
 
                cout << "Enter ID: "; 
                cin >> newStudent.id; 
 
                cout << "Enter Grades: "; 
                cin >> newStudent.grades; 
 
                studentManager.addStudent(newStudent); 
                break; 
            } 
            case 2: { 
                int studentId; 
                cout << "Enter the ID of the student to update: "; 
                cin >> studentId; 
 
                Student updatedStudent; 
                cin.ignore();  



 
                cout << "Enter Updated Name: "; 
                getline(cin, updatedStudent.name); 
 
                cout << "Enter Updated Grades: "; 
                cin >> updatedStudent.grades; 
 
                studentManager.updateStudent(studentId, updatedStudent); 
                break; 
            } 
            case 3: 
                studentManager.displayStudents(); 
                break; 
            case 4: 
                cout << "Exiting the student records management program. Goodbye!" << endl; 
                return 0; 
            default: 
                cout << "Invalid choice. Please enter a valid option." << endl; 
        } 
    } 
 
    return 0; 
} 
 
 
 
 
 
 


