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1} Create a simple banking system that allows users to open accounts, deposit and
withdraw money,
and check their account balances.

#include <iostream>
#include <iomanip>
#include <map>

using namespace std;

class Bank {

private:
map<int, double> accounts;
int accountNumberCounter;

public:
Bank() : accountNumberCounter(1000) {}

// Open a new account
void openAccount() {
accounts[accountNumberCounter] = 0.0;
cout << "Account created successfully. Your account number is: " << accountNumberCounter <<
endl;
accountNumberCounter++;

}

// Deposit money into an account
void deposit(int accountNumber, double amount) {
if (accounts.find(accountNumber) != accounts.end()) {
accounts[accountNumber] += amount;
cout << "Deposit successful. New balance: $" << fixed << setprecision(2) <<
accounts[accountNumber] << endl;
}else {
cout << "Account not found." << end|l;
}
}

// Withdraw money from an account
void withdraw(int accountNumber, double amount) {
if (accounts.find(accountNumber) != accounts.end()) {
if (accounts[accountNumber] >= amount) {
accounts[accountNumber] -= amount;
cout << "Withdrawal successful. New balance: $" << fixed << setprecision(2) <<
accounts[accountNumber] << endl;
}else {
cout << "Insufficient funds." << end];
}
}else {
cout << "Account not found." << end|;



// Check account balance
void checkBalance(int accountNumber) {
if (accounts.find(accountNumber) != accounts.end()) {
cout << "Account balance: $" << fixed << setprecision(2) << accounts[accountNumber] <<
endl;
}else {
cout << "Account not found." << endl|;
!
}
|3

int main() {
Bank bank;
int choice;
int accountNumber;
double amount;

do{
cout << "\nBanking System Menu:\n";
cout << "1. Open Account\n";
cout << "2. Deposit\n";
cout << "3. Withdraw\n";
cout << "4. Check Balance\n";
cout << "5. Exit\n";
cout << "Enter your choice: ";
cin >> choice;

switch (choice) {

case 1:
bank.openAccount();
break;

case 2:
cout << "Enter account number: ";
cin >> accountNumber;
cout << "Enter amount to deposit: S";
cin >>amount;
bank.deposit(accountNumber, amount);
break;

case 3:
cout << "Enter account number: ";
cin >> accountNumber;
cout << "Enter amount to withdraw: $";
cin >>amount;
bank.withdraw(accountNumber, amount);
break;

case 4:
cout << "Enter account number: ";
cin >> accountNumber;



bank.checkBalance(accountNumber);
break;
case 5:
cout << "Exiting the program. Thank you!\n";
break;
default:
cout << "Invalid choice. Please try again.\n";

}
} while (choice = 5);

return O;



Build a two-player console-based Tic-Tac-Toe game where players
take turns marking a 3x3 grid.

#include <iostream>
using namespace std;

// Function to print the Tic-Tac-Toe board
void printBoard(char board[3][3]) {
cout<<" 12 3\n";
for (inti=0;i<3; ++i) {
cout<<i+1<<""
for (intj=0;j<3; ++j) {
cout << board[i][j] << " ";
!
cout << endl;
}

cout << endl;

}

// Function to check if a player has won
bool checkWin(char board[3][3], char player) {
// Check rows and columns
for (inti=0;i<3; ++i) {
if ((board[i][0] == player && board[i][1] == player && board[i][2] == player) | |
(board[0][i] == player && board[1][i] == player && board[2][i] == player)) {
return true;
1
}

// Check diagonals

if ((board[0][0] == player && board[1][1] == player && board[2][2] == player) | |
(board[0][2] == player && board[1][1] == player && board[2][0] == player)) {
return true;

}

return false;

}

// Function to check if the board is full (a tie)
bool checkTie(char board[3][3]) {
for (inti=0;i<3; ++i) {
for (intj=0;j<3;++) {
if (board[i][j]=="") {
return false; // Empty space found, game is not a tie
}
1
}

return true; // Board is full, game is a tie



}

int main() {
charboard[3][3] ={{"", ", "L {"" "L "'L{"%"", "'k
char currentPlayer = 'X;

while (true) {
printBoard(board);

// Get player move

int row, col;

cout << "Player " << currentPlayer << ", enter your move (row and column): ";
cin >> row >> col;

// Validate the move

ifrow<1||row>3]||col<1]]|col>3]| board[row - 1][col-1] I=""){
cout << "Invalid move. Try again.\n";
continue;

}

// Make the move
board[row - 1][col - 1] = currentPlayer;

// Check for a win

if (checkWin(board, currentPlayer)) {
printBoard(board);
cout << "Player " << currentPlayer << " wins!\n";
break;

}

// Check for a tie

if (checkTie(board)) {
printBoard(board);
cout << "It's a tiel\n";
break;

}

// Switch to the other player
currentPlayer = (currentPlayer == 'X') ? '0" : 'X";

}

return O;

}



Develop an address book application to store and manage contacts' names,
phone numbers, and addresses.

#include <iostream>
#include <string>

using namespace std;
const int MAX_CONTACTS = 100;

struct Contact {
string name;
string phoneNumber;
string address;

|5

class AddressBook {

private:
Contact contacts[MAX_CONTACTS];
int contactCount;

public:
AddressBook() : contactCount(0) {}

void addContact(const Contact& contact) {
if (contactCount < MAX_CONTACTS) {
contacts[contactCount++] = contact;
cout << "Contact added successfully." << endl;
}else {
cout << "Address book is full. Cannot add more contacts." << end|;
1
}

void displayContacts() const {
if (contactCount == 0) {
cout << "Address book is empty." << end|;
return;

}

cout << "Contacts:" << endl;
for (inti=0; i < contactCount; ++i) {
cout << "Name: " << contacts[i].name << end|;
cout << "Phone: " << contacts][i].phoneNumber << end]l;
cout << "Address: " << contacts]i].address << end| << end|;
1
}

void searchContact(const string& searchTerm) const {
bool found = false;



for (inti = 0; i < contactCount; ++i) {
if (contacts[i].name.find(searchTerm) != string::npos | |

contacts[i].phoneNumber.find(searchTerm) != string::npos | |
contacts[i].address.find(searchTerm) != string::npos) {

cout << "Name: " << contacts][i].name << endl;

cout << "Phone: " << contactsli].phoneNumber << endl;

cout << "Address: " << contacts[i].address << endl << end|;
found = true;

if (Ifound) {
cout << "Contact not found." << endl;

}
}
|3

int main() {
AddressBook addressBook;

while (true) {
cout << "1. Add Contact" << endl;
cout << "2. Display Contacts" << end|;
cout << "3, Search Contact" << endl;
cout << "4, Exit" << endl;
cout << "Enter your choice: ";

int choice;
cin >> choice;

switch (choice) {
case 1:{

}

Contact newContact;
cin.ignore();

cout << "Enter Name: ";
getline(cin, newContact.name);

cout << "Enter Phone Number: ";
getline(cin, newContact.phoneNumber);

cout << "Enter Address: ";
getline(cin, newContact.address);

addressBook.addContact(newContact);
break;

case 2:

addressBook.displayContacts();
break;

case 3:{



cin.ignore();

cout << "Enter search term: ";
string searchTerm;
getline(cin, searchTerm);

addressBook.searchContact(searchTerm);
break;

}

case 4:
cout << "Exiting the address book application. Goodbye!" << end];
return 0;

default:
cout << "Invalid choice. Please enter a valid option." << end|;

return O;



Create a program to manage student records, including information like
name, ID, and grades. Users can add, update, and view student data.

#include <iostream>
#include <string>

using namespace std;
const int MAX_STUDENTS = 100;

struct Student {
string name;
intid;
float grades;
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class StudentManager {

private:
Student students[MAX_STUDENTS];
int studentCount;

public:
StudentManager() : studentCount(0) {}

void addStudent(const Student& student) {
if (studentCount < MAX_STUDENTS) {
students[studentCount++] = student;
cout << "Student added successfully." << endl;
}else {
cout << "Maximum number of students reached. Cannot add more students." << endl;
}
}

void updateStudent(int studentld, const Student& updatedStudent) {
for (inti=0; i < studentCount; ++i) {
if (students[i].id == studentld) {
students[i] = updatedStudent;
cout << "Student information updated successfully." << endl;
return;
}
}

cout << "Student with ID " << studentld << " not found." << endl;

}

void displayStudents() const {



if (studentCount == 0) {
cout << "No student records available." << endl;
return;

}

cout << "Student Records:" << endl;

for (inti=0; i < studentCount; ++i) {
cout << "ID: " << students]i].id << endl;
cout << "Name: " << students]i].name << endl;
cout << "Grades: " << students][i].grades << endl << endl;

!

}
|3

int main() {
StudentManager studentManager;

while (true) {
cout << "1. Add Student" << endl;
cout << "2. Update Student" << endl;
cout << "3. View Students" << endl;
cout << "4. Exit" << endl;
cout << "Enter your choice: ";

int choice;
cin >> choice;

switch (choice) {
case 1:{
Student newStudent;
cin.ignore(); // Clear the newline character from the buffer

cout << "Enter Name: ";
getline(cin, newStudent.name);

cout << "Enter ID: ";
cin >> newStudent.id;

cout << "Enter Grades: ";
cin >> newStudent.grades;

studentManager.addStudent(newStudent);
break;

}

case 2:{
int studentld;
cout << "Enter the ID of the student to update: ";
cin >> studentld;

Student updatedStudent;
cin.ignore();



cout << "Enter Updated Name: ";
getline(cin, updatedStudent.name);

cout << "Enter Updated Grades: ";
cin >> updatedStudent.grades;

studentManager.updateStudent(studentld, updatedStudent);
break;
}
case 3:
studentManager.displayStudents();
break;
case 4:
cout << "Exiting the student records management program. Goodbye!" << endl|;
return O;
default:
cout << "Invalid choice. Please enter a valid option." << endl;

return O;

}



