MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)
NAAC Accredited with A++ Grade

Project Report

on

Desktop Voice Assistant

Submitted By:
Rubin Jain
0901AD211044
Chandan Jat
0901AD211009

Faculty Mentor:
Dr. Sunil Kumar Shukla

CENTRE FOR ARTIFICIAL INTELLIGENCE

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR - 474005 (MP) est. 1957

JULY-DEC. 2023

Page |2

MADHAY INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

NAAC Accredited with A++ Grade ‘

CERTIFICATE

his is certified that Rubin Jain (0901AD211044) and Chandan Jat (0901AD211009) has submitted the
roject report titled Desktop Voice Assistant under the mentorship of Dr. Sunil Kumar Shukla, in partial
iIfilment of the requirement for the award of degree of Bachelor of Technology in Artificial Intelligence

\nd Data Science from Madhav Institute of Technology and Science, Gwalior.

WA
ﬁi;; M?ﬁlf} @ : k’la’\\\‘aj
Dr. R. R. Singh

Dr. Sunil Kumar Shukla
Faculty Mentor Coordinator
Assistant Professor Centre for Artificial Intelligence

Centre for Artificial Intelligence

Page |3

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)
NAAC Accredited with A++ Grade

DECLARATION

| hereby declare that the work being presented in this project report, for the partial fulfilment of requirement
for the award of the degree of Bachelor of Technology in Artificial Intelligence And Data Science at Madhav
Institute of Technology & Science, Gwalior is an authenticated and original record of my work under the
mentorship of Dr. Sunil Kumar Shukla, Assistant Professor, Centre for Artificial Intelligence.

| declare that | have not submitted the matter embodied in this report for the award of any degree or diploma
anywhere else.

Rubin Jain
0901AD211044
3" Year,
Centre for Artificial Intelligence

Chandan Jat
0901AD211009
3" Year,
Centre for Artificial Intelligence

Page |4

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)
NAAC Accredited with A++ Grade

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. | am thankful to my institute, Madhav Institute of
Technology and Science to allow me to continue my disciplinary/interdisciplinary project as a curriculum requirement,
under the provisions of the Flexible Curriculum Scheme (based on the AICTE Model Curriculum 2018), approved by
the Academic Council of the institute. | extend my gratitude to the Director of the institute, Dr. R. K. Pandit and Dean
Academics, Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Centre for Artificial Intelligence, for allowing me to explore this
project. | humbly thank Dr. R. R. Singh, Coordinator, Centre for Artificial Intelligence, for his continued support
during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty mentors. |1 am grateful to the guidance of Dr. Sunil Kumar Shukla, Assistant
Professor, Centre for Artificial Intelligence, for his continued support and guidance throughout the project. 1 am also
very thankful to the faculty and staff of the department.

Rubin Jain
0901AD211044
3" Year,
Centre for Artificial Intelligence

Chandan Jat
0901AD211009
3" Year,
Centre for Artificial Intelligence

Page |5

ABSTRACT

The project introduces "Echo," a desktop voice assistant powered by natural language processing and machine learning
techniques. Echo is designed to enhance user interaction with the computer, providing hands-free control and assistance.
The system integrates speech recognition, intent recognition, and task execution to understand and respond to user

commands effectively.

The core functionality is driven by a neural network model trained on a diverse set of intents. The training data,
comprising user queries and associated intents, is structured in the form of a JSON file. The neural network employs
bag-of-words representation to recognize user intents, enabling Echo to respond appropriately to various commands and

inquiries.

Echo's capabilities span a wide range of tasks, including providing real-time information such as time, date, and day,
executing Wikipedia searches, conducting Google searches, opening websites, YouTube Automation and facilitating
interactions on WhatsApp. The system leverages external libraries and modules for functionalities like speech synthesis

("speaking™ module), speech recognition ("Hearing™ module), and task-specific operations (" Task.py™ module).

The project adopts a modular architecture, allowing for easy extension of capabilities by adding new intents and
corresponding actions. The continuous loop structure ensures Echo remains active, awaiting user input and delivering

prompt responses.

In conclusion, Echo offers a versatile and user-friendly voice-controlled interface, bridging the gap between users and
their desktop environment. The system's adaptability and expandability make it a promising tool for simplifying tasks
and enhancing the overall user experience. Future developments may focus on refining existing features, expanding the

range of supported actions, and further optimizing the system's performance.

Keyword: Desktop Voice Assistant, Natural Language Processing (NLP), Machine Learning, Neural Network, Intent
Recognition, Bag-of-Words Representation, Speech Recognition, Task Automation, Speech Synthesis, Task-specific
Operations, Intent-Action Mapping, Speech-to-Text, Text-to-Speech, Python Programming, JSON Data Structure.

Page |6

IR

g YRS U ST SHTaTel TgTids JHIUT g S ifdd HTNT TRRBRUT (NLP), TR @, 3R <Re Aead &1
SUANT HRP STANTHAT Bl I SWHeld B Siddx Jalg H B! T UGH Rl g1 3T AT TgadH -
- IaTeRUI SR foharsit BT SN Hoh STcdld ! THY Bl SgHT 5, o b $¢¢ UgdT 3R foban FyRw,
A UT TRIRGHRUT & foT e, iR IR HRATE &1 Uga HRAT|

2 RGNS 3 IR & Wsdl W TRIBIH B & AU T S11-3-a89 Ud dRb IRA edd AIsd Pl
faefd fasan €, S SuaRTEHdl & §idl T aradl &1 JHerdT & 3R 3fed $ce iR fohar ¥ frareia grar g1 3o
faftm 2y iR frarsft & FAuifd w2 & e Iudmesdl gRT ad 7Y are & fauiforg e & e Ue I
BT IUANT a1 71 B, o) I8 SUaiTehdl &l fafid dRadl & WRadl 9§ FUHd &3 &1 dTg UeH Bl 6|

9 RS & HiegeR 3R URSHd ST BT STANT g3 5, o U $ceH SR fohamy s ¥ St o gt
g, 3R U8 SUTNTHd! P17 Sheld Bl Pl TRl I FAHd B BT T I dRipT UeH HRdl g

TABLE OF CONTENTS
TITLE PAGE NO.
Chapter 1: Introduction and Objective 10
1.1 Introduction 10
1.2 Library Used 10
1.3 Purpose and Scope 11
1.4 Enhanced User Interaction and Productivity 12
1.5 Customization and Extensibility 12
1.6 Information Retrieval and Versatility 13
1.7 Speech Recognition and User Experience 13
Chapter 2: Literature Review 14
Chapter 3: Methodology 16
3.1 Technology Selection 16
3.1.1 Choose Programming Language 16
3.1.2 Identify Libraries and Tools 16
3.2 System Architecture Design 16
3.2.1 Define System Components 16
3.2.2 Specify Data Flow 16
3.2.3 Scalability and Extensibility 16
3.3 User Interface Design 17
3.3.1 Plan Voice and Visual Integration 17
3.3.2 Design for Usability 17
3.3.3 Voice and Visual Integration 17
3.3.4 Integration with Task Automation 17
3.4 Task Automation and Customization 17
3.4.1 Develop Task Automation Features 17
3.4.2 Enable User Customization 17
3.4.3 Task Automation Implementation 17
3.4.4 Customization for Voice Interaction 18
3.5 Core Functionality Implementation 18

3.5.1 Voice Recognition 18

Page |7

3.5.2 Text-to-Speech Conversion

3.5.3 Task Execution and Automation

Chapter 4: Code Implementation and Outputs

Chapter 5: Results and Conclusion

5.1 Conclusion

Chapter 6: Future Scope

References

18
18

19

31
31

32

33

Page |8

LIST OF FIGURES

Figure Number
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
411

Figure caption
Hearing.py

speaking.py
Mind.py
neural_network.py
Train.py

Task.py

Echo.py

Output 1

Output 2

Output 3
Output 4

Page No.

19

19

20

20

21

24

19

27

29

30
30

Page |9

Page |10

Chapter 1: Introduction and Objective

1.1 Introduction

In the dynamic landscape of contemporary technology, the advent of intelligent voice assistants has redefined
the way humans interact with computing systems. This project introduces "Echo,” an advanced desktop
assistant that amalgamates cutting-edge technologies, including machine learning, natural language
processing (NLP), and a repertoire of Python libraries, to create an intelligent and responsive voice interface.

Voice-enabled assistants have witnessed a transformative evolution, transcending from mere curiosities to
integral components of our daily lives. With Echo, we aim to contribute to this evolution by crafting a versatile
and powerful voice assistant that seamlessly integrates into the user's desktop environment. Echo is designed
to understand and respond to natural language commands, providing users with an intuitive and hands-free

method of interacting with their computers.

1.2 Libraries Used

The Echo voice assistant integrates a diverse set of Python libraries, each playing a crucial role in enhancing

its functionality:

I. torch: This library forms the backbone for constructing and training neural networks, serving as the

core engine driving Echo's intelligent responses.

Il. pytube: Enabling seamless interactions with YouTube, "pytube” empowers Echo to perform tasks such

as video searching and downloading.

1. pywhatkit: With this library, Echo executes web searches and manages operations on the YouTube

platform, expanding its capabilities in online content retrieval.

IV. wikipedia: Providing access to a vast pool of information, "wikipedia® enables Echo to retrieve

detailed and accurate information from Wikipedia.

V. webbrowser: Essential for opening websites, this library allows Echo to navigate the web and fetch

information as needed.

VI.

VII.

VIII.

XI.

XII.

XII1.

Page |11

keyboard: Through the simulation of keyboard inputs, this library facilitates various tasks, including

controlling media playback and executing specific commands.

pyautogui: Automation of mouse and keyboard actions is made possible by “pyautogui’, enhancing
Echo's ability to interact with the desktop environment.

datetime: Utilized for time and date-related functionalities, the "datetime™ library enhances Echo's

capacity to provide real-time information.

json: Essential for working with JSON data, the “json" library is employed for loading and processing

intent data from external files.

os: The “os’ library is used for interacting with the operating system, facilitating tasks such as file

operations and system-level interactions.

random: For introducing an element of randomness, the ‘random’ library is utilized to select responses

or actions in certain scenarios.

“YouTube™ (from “pytube’): Specifically utilized for fetching video-related information from

YouTube during interactions.

datetime: Enhancing Echo's capability to provide real-time information, the “datetime’ library is

crucial for time and date-related functionalities.

1.3 Purpose and Scope

Purpose:

The primary objective of Echo is to deliver a sophisticated and user-friendly voice assistant that leverages

advanced technologies to enhance human-computer interactions. By combining machine learning, natural

language processing, and a carefully curated selection of Python libraries, Echo aspires to redefine the way

users engage with their desktop environments. Through a conversational interface, Echo aims to offer a

seamless and intuitive experience, empowering users to execute a wide array of tasks with voice commands.

Scope:

Page |12

Voice-Activated Tasks: Echo excels in executing commands through natural language input,
eliminating the need for manual interactions and providing users with a hands-free computing

experience.

Versatile Functionality: Echo’s capabilities extend across various domains, encompassing information
retrieval from Wikipedia, conducting Google searches, managing YouTube video operations,
controlling media playback, accessing real-time data (time, date, day), and interacting with messaging
platforms like WhatsApp.

Extensibility: The modular architecture of Echo ensures adaptability, allowing for the seamless
integration of new features and functionalities. This ensures that Echo can evolve to meet emerging

user requirements and technological advancements.

Enhanced User Experience: By offering a conversational interface, Echo aims to elevate the overall
user experience. The goal is to make the interaction with the desktop assistant accessible, enjoyable,

and suitable for a diverse user base.

Open-Source Nature: Echo embraces an open-source ethos, encouraging collaboration and inviting
developers to contribute to its continual growth and improvement. This open nature facilitates the
expansion of Echo's capabilities through community-driven efforts.

1.4 Enhanced User Interaction and Productivity

One of the primary goals of Echo is to facilitate enhanced user interaction in a Ul-less environment. By relying

on advanced voice recognition and natural language processing, Echo strives to make user interactions more

intuitive, efficient, and productive. The absence of a traditional graphical interface places a premium on voice

commands, making it imperative to optimize this aspect for a seamless and user-friendly experience.

1.5 Customization and Extensibility

Echo is designed with a focus on customization and extensibility to cater to diverse user preferences and

requirements. Users should have the flexibility to tailor Echo to their specific needs, integrating additional

functionalities and expanding its capabilities. This objective ensures that Echo is not a one-size-fits-all solution

but rather a versatile tool that can adapt to various user contexts and scenarios.

Page |13

1.6 Information Retrieval and Versatility

A crucial aspect of Echo's objectives is its proficiency in information retrieval and versatility. Users should
be able to obtain relevant and accurate information through natural language queries. Whether it's retrieving
data from the web, accessing local information, or providing insightful responses, Echo aims to be a

comprehensive source of information, showcasing its versatility across a spectrum of user inquiries.

1.7 Speech Recognition and User Experience

The quality of speech recognition directly influences the overall user experience with a voice assistant. Echo
places a strong emphasis on refining its speech recognition capabilities to accurately understand and interpret
user commands. By prioritizing a seamless and reliable speech recognition system, Echo aims to elevate the

overall user experience, ensuring that interactions are effortless, precise, and frustration-free.

Page | 14

Chapter 2 — Literature Review

Voice assistants have become an integral part of everyday life, leveraging artificial intelligence to
enhance user experience and streamline various tasks. This literature review explores several studies
and projects that delve into the development and applications of voice assistants.

[1] Agrawal et al. (2023) present a comprehensive study titled "Voice Assistant Using Python.” Their
work focuses on the implementation of a voice assistant and is notable for its unique approach. The
authors discuss the technical aspects of their Python-based voice assistant, providing insights into the
programming intricacies involved in creating such systems. This hands-on approach contributes
valuable practical knowledge to the field.

[2] Terzopoulos and Satratzemi (Year) bring a broader perspective by examining the role of voice
assistants in everyday life and education. Their work, conducted at the University of Macedonia,
Greece, investigates the impact of voice assistants and smart speakers on user routines and educational
processes. This study is valuable for understanding the societal implications and educational
applications of voice assistant technology.

[3] Shende et al. (2019) contribute to the literature with their work on an Al-based voice assistant using
Python. The authors explore the integration of artificial intelligence into voice assistants, adding a
layer of sophistication to the system's capabilities. This study highlights the evolving nature of voice
assistant technology and its intersection with artificial intelligence.

[4] Tulshan and Dhage (2019) present a survey on popular virtual assistants such as Google Assistant,
Siri, Cortana, and Alexa. This comprehensive review provides insights into the strengths and
weaknesses of existing voice assistants. Understanding the landscape of virtual assistants is crucial for
the continuous improvement of these systems, and this survey serves as a valuable resource for
researchers and developers.

[5] Kulhalli et al. (2017) contribute to the literature by presenting a "Personal Assistant with Voice
Recognition Intelligence." Their work focuses on the integration of voice recognition intelligence into
a personal assistant system. This study emphasizes the user-centric design of voice assistants, aiming
to enhance personalization and adaptability in real-world scenarios.

In addition to academic publications, the literature also includes practical implementations and
tutorials.

[6] The project on "Desktop's Virtual Assistant Using Python" available on ResearchGate provides a
hands-on guide for implementing a voice assistant on a desktop platform.

Page |15

[7] Similarly, the GeeksforGeeks tutorial and [8] the IEEE Xplore document contribute to the literature

by offering practical insights and technical details on voice assistant development.

Page |16

Chapter 3: Methodology

3.1 Technology Selection

3.1.1 Choose Programming Language

The selection of a programming language is a critical decision that influences the efficiency,
scalability, and maintainability of the project. Here, we delve into the considerations that led to the
choice of a specific programming language. Factors such as community support, available libraries,
and the language's alignment with the unique requirements of voice processing tasks are meticulously

examined.

3.1.2 Identify Libraries and Tools

An exhaustive analysis of the libraries and tools chosen for Echo's development is presented. We
explore the functionality of each tool, its role in voice recognition and natural language processing,
and how it aligns with the overarching goals of the project. Considerations for adaptability, ease of
integration, and the potential for future enhancements are thoroughly evaluated.

3.2 System Architecture Design

3.2.1 Define System Components
This section dissects the design of Echo's system components, providing a comprehensive
understanding of the architecture's building blocks. Each component is scrutinized for its role,

interdependencies, and contributions to the overall functionality of the voice assistant.

3.2.2 Specify Data Flow
An in-depth exploration of the data flow within the system is undertaken. This includes a meticulous
examination of how information traverses different components, emphasizing the efficiency,

reliability, and security of data exchange.

3.2.3 Scalability and Extensibility
Considerations for scalability and extensibility are elucidated. The methodology explores how Echo is
designed to handle increased loads, accommodate additional features, and seamlessly integrate with

evolving technologies, ensuring longevity and adaptability.

Page |17

3.3 User Interface Design

3.3.1 Plan Voice and Visual Integration
This segment outlines the meticulous planning involved in integrating voice and visual elements within
Echo. Strategies for user interaction in the absence of a traditional graphical user interface are

discussed, emphasizing a holistic and inclusive user experience.

3.3.2 Design for Usability
Usability is a cornerstone of effective user interface design. Here, we delve into the principles and

practices employed to ensure that Echo is intuitive, user-friendly, and accessible to a diverse user base.

3.3.3 Voice and Visual Integration
The intricacies of seamlessly integrating voice and visual elements are explored. This includes
considerations for creating a cohesive and intuitive user experience that optimally leverages both

modalities.

3.3.4 Integration with Task Automation
This section delves into the synergies between user interface design and task automation. Emphasis is
placed on creating a fluid and intuitive interaction between users and automated tasks, enhancing

overall usability.

3.4 Task Automation and Customization

3.4.1 Develop Task Automation Features

The development of task automation features is expounded upon, detailing the identification and
implementation of tasks conducive to automation. The methodology ensures that the voice assistant
proactively addresses user needs through efficient and intelligent task execution.

3.4.2 Enable User Customization

This section outlines Echo's approach to user customization, empowering users to tailor the voice
assistant to their specific needs and preferences. The methodology ensures a personalized and adaptive

user experience.

3.4.3 Task Automation Implementation
Technical intricacies of implementing task automation are unveiled, covering the development of
scripts or modules that facilitate seamless automated task execution. The section provides insights into

ensuring reliability, responsiveness, and adaptability in the automation framework.

Page |18

3.4.4 Customization for Voice Interaction
Here, we explore the customization options available for voice interactions, allowing users to
personalize their interaction patterns and optimize the voice assistant's responsiveness to individual

preferences.

3.5 Core Functionality Implementation

3.5.1 Voice Recognition
The linchpin of Echo's functionality, voice recognition, is discussed in granular detail. This includes
the selection of algorithms, training processes, and the integration of voice recognition into the

overarching system architecture.

3.5.2 Text-to-Speech Conversion
The methodology behind text-to-speech conversion is meticulously explored, detailing the techniques,

tools, and libraries employed to convert textual responses into clear and coherent audible speech.

3.5.3 Task Execution and Automation
This section covers the implementation of task execution and automation, elucidating how user
commands are translated into actions and automated processes. The focus is on ensuring accuracy,

efficiency, and seamlessness in task execution.

Chapter 4:

Code Implementation

File 1 — Hearing.py

speech_recognition

Listen(

r=sr.Re
sr
pri

):

cognizer()
.Microphone() source:
nt("Listening....")

r.pause_threshold=1

aud

pri
que
pri

io=r.listen(source,9,5)

nt("Recognizing...")
ry=r.recognize_google(audio,
nt(f"You Said:{query}")

query=str(query)

query.lower()

fig. 4.1

Page |19

The code employs the SpeechRecognition library to create a "Listen™ function, capturing and converting

spoken words into text. It initializes a speech recognizer, configures the microphone, captures audio, and

attempts to recognize speech using Google's Web Speech API. The recognized text, in lowercase, is then

returned.

File 2 — speaking.py

pyttsx3

A

engine=
voices=

engine.
engine.
print("
print(
engine.
engine.
print ("

):

pyttsx3.init("sapi5")
engine.getProperty('voices")
setProperty('voices',voices[0].id)
setProperty('rate’,160)

")

)
say (=)
runAndWait ()

")

fig 4.2

Page |20

In this file, we utilizes the pyttsx3 library to define a “say” function for text-to-speech synthesis. It initializes
the text-to-speech engine, sets voice properties, and speaks the provided text. The engine's voice is configured

for the default Windows SAPI5 synthesizer, and the speech rate is set to 160 words per minute.

File 3 — Mind.py

import torch.nn as nn
class NeuralNet(nn.Module):

def __init_ (’ h
super(NeuralNet,). _init_ ()
.11=nn.Linear(,
.12=nn.Linear(
.13=nn.Linear(
.relu=nn.ReLU()

forward(,X):
out= .11(x)
out= .relu(out)
out= .12(out)
out= .relu(out)
out= .13(out)
return out

fig 4.3
This code defines a neural network class (NeuralNet) using the PyTorch library. It inherits from nn.Module

and has three linear layers (11, 12, 13) with ReLU activation functions (relu). The forward method specifies

the forward pass of the network, indicating how input data x is processed through the layers to produce the

output. The network is designed for a classification task with input_size, hidden_size, and num_classes as

parameters.

File 4 — neural_network.py

import numpy as np
import nltk
from nltk.stem.porter import PorterStemmer

custom_nltk data_directory =
"C:\\Users\\Dell\\AppData\\Local\\Programs\\Python\\Python310\\Lib\\site-packages\\nltk"

nltk.data.path.append(custom_nltk data_directory)

stemmer=PorterStemmer ()

def tokenize(K
return nltk.word tokenize(

Page |21

def stem():
return stemmer.stem(.lower())

bag of words(,):

sentence_word=[stem(word) for word in
bag=np.zeros(len() =np.float32)
for idx,w in enumerate():
if w in sentence_word:
bag[idx]=1
return bag

fig 4.4

This code defines functions for tokenization (tokenize), stemming (stem), and creating a bag of words
(bag_of words). Tokenization splits a sentence into individual words. Stemming reduces words to their root
form. The bag of words function creates a numerical representation of a sentence based on the presence or
absence of words in a predefined set (words). The resulting bag is a binary vector indicating word occurrences.
The code utilizes the NLTK library and a custom NLTK data directory.

File 5 — intents.json

The JSON structure represents a set of intents for a desktop voice assistant named "Echo." Each intent has a
tag, patterns (user input phrases), and corresponding responses. The intents cover a variety of user interactions,
including greetings, goodbyes, inquiries about health, commands for Google, WhatsApp, YouTube, playing,
opening websites, and more. The assistant also handles tasks like telling jokes, providing information about
itself, giving the date, time, and day, responding to compliments and insults, handling user queries about the
developers, and offering functionalities like setting timers and asking for suggestions. The responses are
designed to make the interaction engaging, informative, and user-friendly.

This json file is our chat dataset which we will convert into the pth file in the next code.

File 6 — Train.py

import numpy as np

import json

import torch

import torch.nn as nn

from torch.utils.data import Dataset,Dataloader

from neural_network import bag _of_words,tokenize,stem
from Mind import NeuralNet

with open('intents.json','r"') as f:
intents = json.load(f)

all words
=[]
xy=[]

for intent in intents['intents']:
tag=intent['tag’']
tags.append(tag)

for pattern in intent["patterns"]:
w=tokenize(pattern)
all words.extend(w)

xy.append((w,tag))

ignore_words=[",","?","/",".","1"]

all words=[stem(w) for w in all words if w not in ignore_words]
all words=sorted(set(all words))

tags=sorted(set(tags))

for (pattern_sentence,tag) in xy:
bag=bag_of_words(pattern_sentence,all words)
x_train.append(bag)

label=tags.index(tag)
y_train.append(label)

x_train=np.array(x_train)
y_train=np.array(y_train)

num_epochs=1000
batch_size=8
learning_rate=0.001
input_size=len(x_train[0])
hidden_size=8
output_size=len(tags)

print("Training The Model...")
class chatDataset(Dataset):

def __init_ (K
.n_samples=1len(x_train)
.X_data=x_train
.y_data=y_train

def _ getitem_ (,

return .X_data[
def __len_ ():
return .n_samples
dataset=chatDataset()

train_loader=Dataloader(=dataset,
=batch_size,
=True,
=0)
device=torch.device('cuda' if torch.cuda.is_available() else ‘'cpu")
model=NeuralNet(input_size,hidden_size,output_size).to(=device)
criterion=nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=1learning rate)

for epoch in range(num_epochs):
for (words,labels) in train_loader:
words = words.to(device)
labels = labels.to(=torch.long).to(device)
outputs=model (words)
loss=criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+l) % 100==0:
print(f'Epoch [{epoch+1}/{num_epochs}],Loss: {loss.item():.4f}")
print(f'Final Loss:{loss.item():.4f}")

data={
"model state":model.state dict(),
"input_size":input_size,
"hidden size":hidden size,
"output_size":output_size,
"all words":all_words,
"tags":tags
}
FILE="TrainData.pth"
torch.save(data,FILE)
print(f"Training Complete, File Saved To {FILE}")

fig 4.5

This python code reads intents from a JSON file, preprocesses the data by tokenizing, stemming, and encoding

patterns and tags. It then sets up a neural network using PyTorch, defining a custom dataset and Datal.oader.
The model is trained with CrossEntropyLoss and Adam optimizer, iterating for a specified number of epochs.
The training process involves updating weights based on the calculated loss. After training, the script saves
the model's state dictionary, input size, hidden size, output size, and vocabulary to a file. This file, named

"TrainData.pth’, can be used to deploy the trained chatbot model for interactive user interactions.

File 7 — Task.py

import datetime

from pytube import YouTube

from speaking import say

from keyboard import press,press_and release,write

import Hearing

import wikipedia

import pywhatkit

import webbrowser as web

from os import startfile

from pyautogui import click

from time import sleep

def Time():
time=datetime.datetime.now().strftime("%H:%M")
say(time)

Date():
date=datetime.date.today()
say(date)

Day():
day=datetime.datetime.now().strftime("%A")

say(day)

NonInputExecution(
=str()

if "time" in
Time()

elif "date" in
Date()

elif "day" in
Day ()

InputExecution(

if "wikipedia" in :
name=str() .replace("wikipedia"”,"").replace("wiki","")
result=wikipedia.summary(name)
say(result)
elif "Google" in
name=str() .replace("Google","").replace("Google search",""
search","").replace("google","")
= .replace("search","")
.replace("google","")
pywhatkit.search()
elif "youtube" in :
= .replace("youtube","").replace("search”,"").replace("open","")
result="https://www.youtube.com/results?search_query="+
web.open(result)

).replace("google

elif "play" in :
= .replace("play","")
url=pywhatkit.playonyt()
say("Welcome To youtube prompt")
while True:
say("Listening")
=Hearing.Listen()
if ‘'pause' in :
press('k")
elif ‘'play' in
press('k")
elif 'mute’ in
press('m")
elif ‘unmute' in
press('m")
elif 'increse volume' in
press("ArrowUp")
elif 'decrease volume' in
press("ArrowDown")
elif 'full screen' in
press('f")
elif 'exit full screen' in
press('Esc")
elif 'seek forward' in
press('l")
elif 'seek backward' in
press('J")
elif 'fast forward' in
press('L")
elif 'rewind' in
press('J")
elif 'next' in :
press('Shift + n")

elif 'increase playback speed' in
press_and release('Shift + .")

elif 'decrease playback speed' in
press _and release('Shift +k ,")

elif 'go to beginning' in :
press('Home")

elif 'go to end' in
press('End")

elif 'toggle theater mode' in
press('t")

elif 'toggle miniplayer' in
press('i")

elif 'toggle autoplay' in
press('Shift + a')

press('Shift + 1")

press('Shift + d')
elif 'toggle captions' in
press('c')
elif 'cycle through captions' in
press('Shift + c")
elif 'move forward by frame' in
press('.")
elif 'download' in
yt = YouTube(url)
video stream = yt.streams.get highest resolution()
say(f"Downloading: {yt.title}")
say(f"Resolution: {video_ stream.resolution}")
say(f"File Size: {video stream.filesize / (1024 * 1024):.2f} MB")
video_ stream.download('D:\\Dekstop Assistant using
ML,NN,NLP,DL\\yt_download")
say("Download complete!")

elif 'exit' in :
say("Youtube Propt Closes.™)
break
elif "website" in :
= .replace("open"”,"")
web2= .replace("website","")
web2=web2.strip()
webl="https://www. '+web2+"'.com
web.open(webl)
elif "whatsapp" in

while True:
click(x=1340, y=1050)
sleep(10)
click(x=399, y=148)
sleep(2)
say("Tell me the name of the person with whom you wanna interact")
=Hearing.Listen()
write()
click(x=381,y=231)
sleep(2)
say("Say message ,voice call or video call to perform messaging , voice call
and video call respectively or say quit/exit to close whatsapp promt™)
res=Hearing.Listen()
def whatsappMsg():
click(x=768, y=980)
sleep(2)
say("Tell me what you wanna message?")
query=Hearing.Listen()
write(query)
press("enter")
def whatsappVoiceCall():
click(x=381,y=231)
sleep(2)
click(x=1811,y=92)
say("Calling

def whatsappVideocall():
click(x=381,y=231)
sleep(2)
click(x=1735,y=92)
say("Calling
if "message" in res or "msg" in res:
whatsappMsg()
elif "voice call" in res or "voice" in res or "voicecall" in res:
whatsappVoiceCall()
elif "video call" in res or "video" in res or "videocall" in res:
whatsappVideocall()
elif "exit" in res or "quit" in res:
break
else:
say("Can not understand you completely")

fig 4.6

This script contains functions for various voice-activated commands. It uses external libraries like pytube,
pyttsx3, keyboard, and pywhatkit. The functions include retrieving and speaking the current time, date, and
day, searching and summarizing information from Wikipedia, executing Google searches, opening YouTube
videos, controlling YouTube playback, opening websites, and interacting with WhatsApp by sending
messages or making calls. The script provides hands-free control over several applications and web services,

enhancing user convenience through voice commands.

File 8 — Echo.py

This is our main file , after running Train.py file which will convert our json file into pth file and train our

neural network upto 10 epochs , we run this file to finally start our “Echo”.

import random

import json

import torch

from Mind import NeuralNet

from neural_network import bag_of_words,tokenize
from Task import NonInputExecution

from Task import InputExecution

import os

device =torch.device('cuda' if torch.cuda.is_available() else 'cpu')

with open("intents.json",'r"') as json_data:
intents=json.load(json_data)

FILE="TrainData.pth"

data=torch.load(FILE)

input_size=data["input_size"]
hidden_size=data["hidden_size"]
output_size=data["output size"]

all words=data["all words"]
tags=data["tags"]
model state=data["model state"]

model=NeuralNet(input_ size,hidden_size,output size).to(device)
model.load state dict(model state)
model.eval()

Name = "Echo"

from speaking import say

from Hearing import Listen

def Main():
sentence = Listen()
result=str(sentence)
if sentence in ["bye

exit()

sentence=tokenize(sentence)
X=bag_of_words(sentence,all_words)
X=X.reshape(1,X.shape[0])
X=torch.from_numpy(X).to(device)

, 'goodbye","good bye",

exit","close","terminate"]:

output=model (X)
_, predicted=torch.max(output, =1)

tag=tags[predicted.item()]

probs=torch.softmax(output, =1)
prob=probs[@][predicted.item()]

if prob.item() > ©.75:
for intent in intents['intents']:
if tag==intent["tag"]:
reply=random.choice(intent["responses”])
if "time" in reply:
NonInputExecution(reply)
elif "date" in reply:
NonInputExecution(reply)
elif "day" in reply:
NonInputExecution(reply)
elif "wikipedia" in reply:
InputExecution(reply,sentence)
elif "Google" in reply:
InputExecution(reply,result)
elif "youtube" in reply:
InputExecution(reply,result)
elif "playing" in reply:
InputExecution(reply,result)
elif "website" in reply:
InputExecution(reply,result)
elif "whatsapp" in reply:
InputExecution(reply,result)

Page |29

say(reply)

fig 4.7
This Python Code implements a voice-activated assistant using a trained neural network for intent recognition.
It loads a pre-trained model and processes user input to determine the intent. If the confidence of the prediction
is high, it executes the corresponding action, such as providing information, searching Wikipedia, or
interacting with specific applications like Google, YouTube, or WhatsApp. The assistant continues to listen
for user input in a loop, allowing for continuous interaction. The script enhances user experience by enabling

voice-controlled commands for various tasks.

Output

On running Train.py file:

PS D:\Dekstop Assistant using ML,NN,NLP,DL> p
Training The Model...
Epoch [18@/1008],L0sS:
Epoch [200/1000],L0ss:
Epoch [300/1000],L0
Epoch [488/1000],L0
Epoch [500/1000],L0
Epoch [600/1000],L0
Epoch [780/1000],L0
Epoch [880/1000],L0 .0000

Epoch [99@/1000],Lo .0000

Epoch [1000/1000],l0ss: ©.0000

Final Loss:0.0000

Training Complete, File Saved To TrainData.pth
PS D:\Dekstop Assistant using ML,NN,NLP,DL>

.8551
.2102
.0103
.8003
.8001
.0010
.8001

T OO RRD

fig 4.8
On running Echo.py file , you get this kind of responses where you need to give input through your voice.

Listening....
Recognizing...
You Said:hello echo

i am your assistant here to help.
Listening....
Recognizing...

You Said:tarikh kya

2023-11-23

Listening....
Recognizing...
You Said:time batao

84:49

fig 4.9

Page |30

Listening....
Recognizing. ..
You Said:what are you doing

Talking to you, of course!

Listening....
Recognizing. ..
You Said:tell me a joke

what's orange and sounds like a parrot? A carro

fig. 4.10

You Said:Wikipedia Elon Musk

Elon Reeve Musk (EE-lon; born June 28, 1971) is a businessman and investor. Musk is the founder, chairman, CEO and chief technology officer of SpaceX; angel in
vestor, CEO, product architect and former chairman of Tesla, Inc.; owner, chairman and CTO of X Corp.; founder of the Boring Company and XAT; founder of Neur
alink and OpenAT; and president of the Musk Foundation. He is the wealthiest person in the world, with an estimated net worth of US$219 billion as of November 2
823, according to the Bloomberg Billionaires Index, and $241 billion according to Forbes, primarily from his ownership stakes in Tesla and SpaceX.Musk was born
in Pretoria, South Africa, and briefly attended the University of Pretoria before immigrating to Canada at age 18, acquiring citizenship through his Canadian-bo
rn mother. Two years later, he matriculated at Queen's University in Kingston, Ontario. Musk later transferred to the University of Pennsylvania, and received b
achelor's degrees in economics and physics there. He moved to California in 1995 to attend Stanford University. However, Musk dropped out after two days and, wi
th his brother Kimbal, co-founded online city guide software company Zip2. The startup was acquired by Compaq for $307 million in 1999, and with $12 million of
the money he made, that same year Musk co-founded X.com, a direct bank. X.com merged with Confinity in 20@@ to form PayPal.

In October 2002, eBay acquired PayPal for $1.5 billion, and that same year, with $160 million of the money he made, Musk founded SpaceX, a spaceflight services
company. In 2084, he became an early investor in electric vehicle manufacturer Tesla Motors, Inc. (now Tesla, Inc.). He became its chairman and product architec
, assuming the position of CEO in 2008. In 2086, Musk helped create SolarCity, a solar-energy company that was acquired by Tesla in 2616 and became Tesla Energ
y. In 2013, he proposed a hyperloop high-speed vactrain transportation system. In 2615, he co-founded OpenAI, a nonprofit artificial intelligence research compa
ny. The following year, Musk co-founded Neuralink-a neurotechnology company developing brain-computer interfaces-and the Boring Company, a tunnel construction ¢
ompany. In 2022, he acquired Twitter for $44 billion. He subsequently merged the company into newly created X Corp. and rebranded the service as X the following
year. In March 2023, he founded xAI, an artificial-intelligence company.Musk has expressed views that have made him a polarizing figure. He has been criticized
for making unscientific and misleading statements, including COVID-19 misinformation, transphobia and antisemitic conspiracy theories. His Twitter ownership ha
s been similarly controversial, including laying off a large number of employees, an increase in hate speech on the website, and changes to Twitter Blue verific
ation. In 2018, the . Securities and Exchange Commission (SEC) sued him for falsely tweeting that he had secured funding for a private takeover of Tesla. To
settle the case, Musk stepped down as the chairman of Tesla and paid a $20 million fine.

fig 4.11

we can chat with the “Echo” similarly and ask it to perform a variety of tasks.

Page |31

Chapter 5: Result and Conclusion

The voice-activated assistant project demonstrates successful implementation of intent recognition using a
neural network, providing a foundation for natural language understanding. The training process involves
preprocessing textual data from intents.json, tokenizing and creating a bag-of-words representation. The
NeuralNet class, trained over epochs, achieves high accuracy in recognizing user intents.

The system integrates seamlessly with external libraries like PyTorch for deep learning, Pytube for YouTube
functionality, and Pywhatkit for Google searches. The user interacts with the assistant through voice
commands, creating a hands-free and user-friendly experience. The assistant understands a range of
commands, from basic queries about time, date, and day to more complex tasks such as searching Wikipedia,
playing YouTube videos, and interacting with WhatsApp.

The modular architecture enhances maintainability and scalability. Each functionality, whether related to
neural network training, task execution, or external services like YouTube and WhatsApp, resides in separate
modules, promoting code organization and reusability. The voice assistant achieves a balance between

simplicity and sophistication, making it accessible to users with varying technical backgrounds.

Conclusion:

In conclusion, the voice-activated assistant project offers an interactive and versatile user experience. The
successful implementation of intent recognition enables users to perform tasks effortlessly through natural
language commands. The utilization of machine learning techniques, particularly neural networks, showcases
the potential for voice-based interfaces in everyday applications.

The system's ability to execute non-input tasks and respond to user queries demonstrates the practicality of
the project. The integration of external services like YouTube and WhatsApp adds a layer of entertainment
and communication, expanding the scope of use beyond information retrieval. The project has reached a stage
where it can serve as a proof of concept for voice-controlled assistants in diverse environments.

However, it is important to acknowledge the limitations. The system's performance heavily relies on the
quality and diversity of the training data. Enhancements in data preprocessing techniques and the inclusion of
more intents can further improve accuracy and broaden the assistant's capabilities. Additionally, fine-tuning
hyperparameters and exploring advanced neural network architectures could contribute to better

generalization and robustness.

Page |32

Chapter 6 - Future Scope:

The project has immense potential for future development and expansion. Here are some key areas for

improvement and extension:

VI.

VII.

VIII.

Enhanced Intent Recognition:
a. Incorporate more diverse intents and responses to improve the assistant's understanding of user
queries.
b. Implement sentiment analysis to capture user emotions and respond accordingly.
Continuous Learning:
a. Integrate mechanisms for continuous learning, allowing the assistant to adapt to new phrases,
terms, and user preferences over time.
Multimodal Interaction:
a. Extend capabilities to understand and respond to visual inputs, such as recognizing objects
through a camera.
Advanced Task Execution:
a. Expand the range of tasks, including integration with more third-party services, automation of
common computer tasks, and support for additional languages.
User Personalization:
a. Implement user profiles to personalize responses and provide a tailored experience based on
individual preferences.
Enhanced User Feedback:
a. Develop a feedback system to collect user input on the accuracy and helpfulness of responses,
enabling continuous improvement.
Cross-Platform Integration:
a. Extend compatibility to work seamlessly across different devices and platforms, such as
smartphones, smart speakers, and computers.
Security and Privacy:
a. Implement robust security measures to protect user data and privacy, especially when dealing
with sensitive tasks and information.
Generative Al:
i. We can implement this project with generative Al’s like ChatGpt and Google Bard

e.t.c.

Page |33

References:

[1]. Harshit Agrawal, Nivedita Singh, Gaurav Kumar, Dr. Diwakar Yagyasen, Mr. Surya Vikram Singh.
"Voice Assistant Using Python" An International Open Access-revied, Refereed Journal.Unique Paper ID:
152099, Publication Volume & Issue: VVolume 8, Issue 2, Page(s): 419-423.

[2]. George Terzopoulos, Maya Satratzemi “Voice Assistants and Smart Speakers in Everyday Life and In
Education”,Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece.

[3]. Deepak Shende. Ria Umabiya, Monika Raghorte, Aishwarya Bhisikar. Anup Bhange. "Al Based Voice
Assistant Using Python", International Journal of Emerging Technologies and Innovative Research
(www.jetir.org), ISSN 2349-5162, VVol.6,Issue 2, page no.506-509, February-2019.

[4]. Tulshan, Amrita & Dhage, Sudhir. (2019). “Survey on Virtual Assistant: Google Assistant, Siri, Cortana,
Alexa”, 4" International Symposium SIRS 2018, Bangalore, India, September 19-22, 2018, Revised Selected
Papers. 10.1007/978-981-13-5758-9 17.

[5]. Dr. Kshama V. Kulhalli, Dr.Kotrappa Sirbi, Mr. Abhijit J. Patankar, "Personal Assistant with Voice
Recognition Intelligence™, International Journal of Engineering Research and Technology. ISSN 0974-3154
Volume 10, Number 1 (2017).
[6].https://www.researchgate.net/publication/372657833_DESKTOP'S_VIRTUAL_ASSISTANT_USING _
PYTHON

[7]. https://www.geeksforgeeks.org/voice-assistant-using-python/

[8]. https://ieeexplore.ieee.org/document/9995997

https://www.geeksforgeeks.org/voice-assistant-using-python/
https://ieeexplore.ieee.org/document/9995997

	73748825c11cf0d1cc402c747871c2288df7cf2ef45566f4574b35806b6b28a0.pdf
	73748825c11cf0d1cc402c747871c2288df7cf2ef45566f4574b35806b6b28a0.pdf
	73748825c11cf0d1cc402c747871c2288df7cf2ef45566f4574b35806b6b28a0.pdf

