MADHAY INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC At Aceredited Institute Affiliated to RGPV
Bhopal)

Project Report

on

Stock Trading Simulator

Submitted By:
Aditi Shrivastava(0901A1211003)
Akshat Chandravanshi(0901A1211006)

Faculty Mentor:
Dr. Neelam Arya
Dr.Sunil Kumar Shukla

CENTER FOR ARTIFICIAL INTELLIGENCE

MADHAYV INSTITUTE OF TECHNOLOGY &
SCIENCE GWALIOR - 474005 (MP) est. 1957

July-Dec 2023

LOGY & SCIENCE, GWALIOR
ited Insitue Affiliated to RGPV, Bhopal)

hﬂkt fulfilment of
ial Intelligence and
d and original

-

rrr,?."’."’

EFE T LS

MADHAV INSTITUTE OF TECHNOLOGY & S(TENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. I am thankful to my institute, Madhav Institute
of Technology and Science to allow me to continue my disciplinary/interdisciplinary project as a curriculum
requirement, under the provisions of the Flexible Curriculum Scheme (based on the AICTE Model Curriculum
2018), approved by the Academic Council of the institute. I extend my gratitude to the Director of the institute,
Dr. R. K. Pandit and Dean Academics, Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Centre for Artificial Intelligence, for allowing me to explore
this project. I humbly thank Dr. R. R. Singh. Coordinator, Centre for Artificial Intelligence, for his continued
support during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty mentors. I am grateful to the guidance of Dr. Neelam Arya, Assistant
Professor, Center for Artificial Intelligence, for his continued support and guidance throughout the project. I
am also very thankful to the faculty and staff of the department.

Aditi Shrivastava)
(0901AI211003)
Akshat Chandravanshi W
(0901AI211006)
3rd Year,

Artificial Intelligence and Robotic

PAGE NO.

1 ‘(ntrod\iéti’on i
1.2 Libraries used :
1.3 Purpose aﬁci'svbpgg\

“hapter 2: Data Ac

quisition

oll cho‘z‘ﬁ

J
b
]
b

3
b
-
b

-

b
)
)
)

FE

ABSTRACT

This Python program constitutes a basic trading simulator designed to implement and
assess a moving average crossover strategy. Leveraging the pandas, numpy. and matplotlib
libraries, the simulator encompasses critical aspects of algorithmic trading, including signal
generation, backtesting, and performance visualization. The moving average crossover
strategy, employed in this simulation, generates buy and sell signals based on the intcrscctin_n
of short-term and long-term moving averages. The backtesting module calculates portfolio
values over time, incorporating initial capital, cash, and asset positions. The simulation output
i1s visualized through matplotlib, providing insights into historical prices, buy/sell signals, and
the evolving portfolio value. While this example serves as an introduction to trading
simulation, it is cssential to acknowledge the complexity of real-world trading, considering
factors such as transaction costs, slippage, and risk management when developing and
deploying trading algorithms. The provided simulator serves as a foundational framework for
understanding and experimenting with algorithmic trading strategies.

This project focuses on the implementation of a trading strategy based on the Moving
Average Convergence Divergence (MACD) indicator, using historical stock price data. The
goal is to identify potential buy and sell signals and evaluate the profitability of the strategy.
The Python programming language, along with the yfinance and matplotlib libraries, was
utilized for data retrieval, analysis, and visualization.

The methodology involves calculating the MACD and signal line for a given stock, such as
TSLA (Tesla), and determining buy and sell signals based on the MACD crossing above or
below the signal line. The resulting signals were visualized on a plot, highlighting buy signals
with green upward-pointing triangles and sell signals with red downward-pointing triangles.

To assess the profitability of the strategy, the script calculates the relative profits of each
trade by comparing the open prices at the buy and sell points. The average relative profit per
trade is computed, providing insight into the performance of the strategy during the given
time period. :

“he implementation demonstrates the potential of using technical indicators, such as the
MACD, for algorithmic trading. However, it is essential to note that historical performance
does not guarantee future success, and the strategy should be thoroughly backtested and
ombined with risk management techniques before considering deployment in live trading
environments.

The modular structure of the code allows for easy parameterization and adaptability to
different stocks or time periods. Further refinements and optimizations can be explored,
including backtesting on additional datasets and incorporating risk management strategies to
enhance the robustness of the trading algorithm.

This project serves as a foundation for individuals interested in algorithmic trading, providing
a practical example of strategy implementation and a starting point for more sophisticated
and risk-aware trading systems.

ATCIE $T A1Y IS o Ry TARYA
e g diet 3R ﬁqaﬁmm TgafiaR 39
%ﬂ?ﬁﬁuﬁﬁamﬂﬁ yfo=ycd & 3nuR TR 3R fagpt & Tobd I

T ¥ IV 0oy, URMIE o, Tedl iR Ul @ R &1 it exd gul R
nmqﬁibé?mmqgﬁﬁmaﬁaﬁﬁ%,@mmmﬁ@?ﬁ/éﬁ%
. T Siqel UaH PRal ¢ faHRid 8 g UIChierdl Hed| Siefh g8 Sareil
ST & URTY & U H 1 T 8 TRV, fTaR Hd gY, dRdfdep gi-dr & AR
[e) <o ol e e e T
PERE DHRD a-Td P11 Ug ar U
B e

:

s Chapter 1 : INTRODUCTION

L

1.1. Introduction

i
v
This project is a short for a stock trading robot or algorithmic trading bot, is an automated system
- designed to execute trades in financial markets, specifically in the stock market, based on prc-dchljc(l
criteria, algorithms, and parameters. These bots use computer programs, algorithms, and mathcmatlcill
i models to analyze market data, identify trading opportunities, and cxccute buy or scll orders without

human intervention.

At the most basic level, an algorithmic trading robot is a computer code that has the ability to generate
%h and execute buy and sell signals in financial markets. The main components of such a robot include
_ entry rules that signal when to buy or sell, exit rules indicating when to close the current position, and
ition sizing rules defining the quantities to buy or sell.

The development and functioning of a stock trading bot involve various components:

* Algorithm Development: Trading bots rely on algorithms created by traders, quantitative analysts, or

developers. These algorithms are based on technical indicators, fundamental analysis, machine
learning, or a combination of these methods.

Data Analysis: Bots analyze vast amounts of historical and real-time market data to identify trends,
patterns, correlations, and other factors that can influence trading decisions.

Decision Making: Based on the predefined rules and strategies, the bot makes buy or sell decisions.
These decisions can be based on signals like moving averages, volume changes, price fluctuations,
news sentiment, etc.

1.2. Libraries Used

e Pandas: A fundamental library for data manipulation and analysis, Pandas was crucial in
handling the dataset's structure. It provided a robust framework for organizing, cleaning, and
transforming the data, making it amenable for analysis.

- Mafploﬂib: These visualization libraries enabled the creation of insightful charts and graphs.
Matplotlib, a versatile 2D plotting library, and Seaborn, based on Matplotlib, added an

- aesthetic layer to the visualizations, enhancing the interpretability of the findings.
| T e Yfinance: is a Python library that provides a simple and easy-to-use way to access historical
market data, live market data, and information about stocks, ETFs (Exchange-Traded Funds),
hf ¢ mutual funds, and more from Yahoo Finance. It enables users to retrieve historical market data
£ for analysis, which can be useful for building trading strategies, conducting research, or
- ' performing quantitative analysis.

4 3

o

|

In [32):

pip install yfinance

Defaulting to user installation because normal site-packages is not writ
eable

Requirement already satisfied: yfinance in c:\users\akshat chandravanshi
\appdata\roaming\python\python39\site-packages (0.2.32) :
Requirement already satisfied: pandas»>=1.3.0 in c:\programdata\anacondaf
\lib\site-packages (from yfinance) (1.4.2)

Requirement already satisfied: html51ib>=1.1 in c:\progr‘amdata\anafondai
\lib\site-packages (from yfinance) (1.1)

Requirement already satisfied: multitasking>=0.6.7 in c:\users\akshat ch
andravanshilappdata\roaming\python\python39\site-packages (from yfinanc
e) (0.0.11)

Requirement already satisfied: appdirs>=1.4.4 in c:\progr‘amda‘ca\anaco"‘da
3\lib\site-packages (from yfinance) (1.4.4)

Requirement already satisfied: pytz»>=2022.5 in c:\programdata\anaconda3
\lib\site-packages (from yfinance) (2022.7)

Requirement already satisfied: 1xml>=4.9.1 in c:\users\akshat chandravan
shilappdata\roaming\python\python39\site-packages (from yfinance) (4.9.

3)

Requirement already satisfied: numpy>=1.16.5 in c:\programdata\anaconda3

s - ==

pip install matplotlib

Defaulting to user installation because normal site-packages is not writea
ble

Requirement already satisfied: matplotlib in c:\programdata\anaconda3\lib
\site-packages (3.7.1)

Requirement already satisfied: packaging>=20.@ in c:\programdatalanaconda3
\lib\site-packages (from matplotlib) (23.8)

Requirement already satisfied: cycler>=08.10 in c:\programdata\anaconda3\li
b\site-packages (from matplotlib) (0.11.0)

Requirement already satisfied: numpy>=1.20 in c:\programdata\anaconda3\lib
\site-packages (from matplotlib) (1.23.5)

Requirement already satisfied: python-dateutil>=2.7 in c:\programdata\anac
onda3\1lib\site-packages (from matplotlib) (2.8.2)

Requirement already satisfied: contourpy>=1.06.1 in c:\programdata\anaconda
3\1ib\site-packages (from matplotlib) (1.0.5)

Requihement already satisfied: pyparsing>=2.3.1 in c:\programdata\anaconda
3\1lib\site-packages (from matplotlib) (3.0.9)

'Requirement already satisfied: pillow>=6.2.0 in c:\programdata\anaconda3\1l

ib\site-packages (from matplotlib) (9.4.0)

Requirement already satisfied: importlib-resources>=3.2.0 in c:\programdat
a\anaconda3\lib\site-packages (from matplotlib) (5.2.0)

Requirement already satisfied: kiwisolver>=1.8.1 in c:\programdata\anacond
a3\lib\site-packages (from matplotlib) (1.4.4)

Requirement already satisfied: fonttools>=4.22.0 in c:\programdata\anacond
a3\lib\site-packages (from matplotlib) (4.25.0)

Requirement already satisfied: zipp>=3.1.0@ in c:\programdata\anaconda3\1lib
\site-packages (from importlib-resources>=3.2.0->matplotlib) (3.11.0)
Requirement already satisfied: six>=1.5 in c:\programdata\anaconda3\lib\si
te-packages (from python-dateutil»>=2.7->matplotlib) (1.16.9)

Note: you may need to restart the kernel to use updated packages.

. 4

In [2]: dimport yfinance as yf
import matplotlib.pyplot as plt
import pandas as pd

.

1.3. Purpose and Scope

The purpose of creating a stock trading bot, also known as an algorithmic trading bot, is multi-
faceted and revolves around leveraging automation and technology to optimize trading activities m
financial markets. Some of the key purposes include:

Automated Execution: Stock trading bots are designed to execute trades automatically based on pre-
defined rules, algorithms, or strategies. They operate without emotional bias, eliminating human errors
that can arise from emotional decision-making or fatigue.

Speed and Efficiency: Bots can process and analyze market data at speeds far beyond human
capability. They can swiftly identify trading opportunities, react to market changes, and execute trades
in milliseconds, taking advantage of fleeting opportunities that might be missed by human traders.

Backtesting and Optimization: Before deploying a trading strategy in live markets, bots can be
backtested using historical data to evaluate their performance. This process allows traders to refine and
optimize strategies based on past market conditions.

Diversification and Consistency: Trading bots can manage multiple assets, portfolios, or strategies
simultaneously, ensuring consistent execution and diversification across various markets or securities.

Strategy Implementation: They enable the implementation of complex trading strategies, such as
high-frequency trading, statistical arbitrage, trend following, or machine leamning-based strategies,
which might be difficult to execute manually.

-
.
-
-
~

In [4]: df
@;t[d] z

Date

Open

High

2.1. Data collection and dataset description

Data acquisition and preprocessing are crucial steps
bot. Proper handling and preparation of data significantly impact the effectiveness and perfor
the trading strategies implemented by the bot.

a. Market Data Sources: Identify and sclect appropriate d

financial data providers like Yahoo Finance, Alpha Vantage, Qu
exchanges or brokerage firms.

Low

In [3]: df= yf.download('TSLA',start:‘zeze-ll-al')

Close

Chapter 2 : Data Acquisition and Preprocessing

Adj Close

i, i Y
in building a robust and reliable trading

ata sources. Common sources include
andl, or direct APIs from stock

i b. Frequency and Granularity: Decide on the frequency and granularity of data required (€.2..
i daily. hourly. minute-by-minute) based on the trading strategy's needs.

c. API Integration: Utilize APIs provided by data sources to programmatically fetch and
retrieve the required data. Libraries like yfinance, alpha_vantage, or direct brokerage APIs can

be used for data retrieval.

[**##*##***********#*?199%%***************#***#**] 120f1 completed

Volume

. 2020-11-02

2020-11-06

2023-11-16
2023-11-17
2023-11-20
2023-11-21
202311-22

131.333328
136.576660
143.539993
142.766663
145.366669

239.490005
232.000000
234.039993
235.039993
242.039993

770 rows * 6 columns

135.660004
142.589996
145.133331
146.666672
145.523331

240.880005
237.389999
237.100006
243.619995
244.009995

130.766663
135563339

139.033340

141.333328

141.426666

230.960007
226.539993
231.020004

233.339996
232.11’000; 233,

133.503326

141.300003

140.326660
146.029999
143.316666

233.589996

234.300003

235.600006
zmgaw |

133.503326
141.300003
140326660
146.029999
143.316666

233.589996

234.300003

235.600006

241.199997

233.070007

87063300
103055100
96429300
85243500
65118000

136816800
142532800
116320100
121987800

56129118

Data Preprocessing:

I ¢ Icanmg and Handling Missing Data: Check for missing values, outliers, or inaccuracies 11
the acquired data and handle them appropriately (e.g., interpolation, deletion. or imputatiorn)

b. Normalization and Scaling: Normalize or scale numerical features to ensure they are on the
same scale, preventing any feature from dominating others during analysis.

¢. Feature Engineering: Create additional features that might enhance the predictive power of
the model. For instance, generating technical indicators like moving averages, RSI. MACD, or
creating derived features from existing data.

d. Handling Time Series Data: Time series data might require special handling, such as
resampling, rolling windows, or lagging/leading indicators to create predictive features.

2.2 Data cleaning and handling missing values.

Data cleaning and the handling of missing values are crucial steps in preparing the dataset for
analysis. In this project, several techniques were applied to ensure the dataset's integrity and

consistency:

A 7

I. Removing Duplicates: Duplicate entries can skew the analysis and lead to inaccurate results.
Using the data.drop_duplicates(["res_id"], keep='first', inplace=True) command, duplicate
rows were eliminated based on the 'res id' column, ensuring that each restaurant was
represented only once in the dataset.

Handling Missing Values: Missing values in the 'address,’ 'timings," and 'opentable_support’
columns were addressed to prevent data gaps from affecting the analysis. The missing values in
the 'address' and 'timings' columns were imputed with placeholder values 'Unknown' and 'Not
available,’ - respectively, using data['address'].fillna("Unknown", inplace=True) and
data['timings'].fillna("Not available", inplace=True). For the 'opentable support' column.
missing values were filled with the default value '0' to maintain data consistency

(data['opentabic_support’].ﬁllna(O, inplace=True)).

¥

F 4
N

These data cleaning and missing value handling techniques contribute to a more robust and
complete dataset, enabling accurate analysis and modeling. They ensure that the dataset is free Born
inconsistencies and gaps, allowing for meaningful insights to be extracted during the subsequent

stages of the project.

i
§

vy

cover mg the per il fmm .
 DataFrame Smmmre‘ 'ﬂ\é damet cohmst& m“

-p‘omtm Anf‘iﬁangles;,‘ and sell
price plot.

] /)
B R P RS N LTS OO R D TR P PP {1 el

i

14 (1911 PIt.FlgureFigs izl (16,10)) T
I Tt p1ot (AT signa), 1abele BAgoal (eolor-rad)

! bt e .néa,li»!-‘»&ib’?tu.\bn o) -ﬂmon?? |

PIv. lepena() } | | }

Pit. show() il 1

¢ P { 0 ; "l' i y i foit O JPSSTR UEREee ' —— dgnial

; ! —— Mo

i TGS At

backt ting, emphasizing the

8
b
b
)

Backtesting and Optimization:

)
Perform backtesting 1stori i
\ o&m(n n | llxk{l»a .\nnl\b on historical data to simulate how the model would have performed in the past.
- s ¢ o St &Y S Q 4 S |
_ ptimize trading § I.llk.gl.kb'hy adjusting parameters, thresholds, or rules based on backtesting results tO
maximize returns or minimize risk.

Chapter 4 : Results

4.1 User driven prediction

The results of a stock trading bot can vary significantly based on various factors, including the

sophistication of the trading strategy, the quality of data used for training, the market conditions, risk
management techniques employed, and the overall design and implementation of the bot. Here are

-
e ¥
h some potential outcomes and results that can arise from a stock trading bot:

_ Profitability:
Successful trading bots can generate profits by making accurate predictions, executing trades

~ effectively. and capitalizing on market opportunities. However, profitability isn't guaranteed, and bots
" might incur losses, especially during volatile or unpredictable market conditions.

~ Risk Management: ‘ T
A well-designed trading bot focuses not only on maximizing profits but also on managing risks.

. Effective risk management strategies help in minimizing losses and controlling exposure 1o market

risks. iy

n:sults mlght differ from llye ﬁading due to factors like slippage, latency, order execution

d data discrepancies. Real-time market conditions can significantly impact bot performance.

rforms well on historical data but fails to generalize to unseen

“occurs when a set of rules pe
live markets, beyond historical data, is crucial.

o the bot's ability to perform in

ck market involves inherent risks, and even the most advanced trading

ant to note that the sto
ding strategy or bot can guarantee consistent profits, and past

experience losses. No tra
ce is not indicative of future results.

CONCLUSION
s
B This pmjwt MM be concluded as ‘
- !t consists of certain codes and information about how this model is designed with tha

usion of ous libraries and data sets that we used init. '
: ot constitutes a basic trading simulator designed to implement and assess 4 monllL—’
pssover strategy. Leveraging the pandas, numpy, and matplotlib libraries, .thc
Jcompasses critical aspects of algorithmic trading, including signal generation,

and performance visualization. The moving average crossover stratcgy,
in this simulation, generates buy and sell signals based on the intersection of short-

1 and long-term moving averages.

e backtesting module calculates portfolio values : it
h. and asset positions. The simulation output is visualized through matplotlib, providing

hts into historical prices, buy/sell signals, and the evolving portfolio value. While this
ple serves as an introduction to trading simulation, it is essential to acknowledge the
mplexity of real-world trading, considering factors such as transaction costs, slippage, and

sk management when developing and deploying trading algorithms.

over time, incorporating initial capital,

ation of a trading bot with strategy based on the
(MACD) indicator, using historical stock price
data. The goal is to identify potential buy and sell signals and evaluate the profitability of the
strategy. The Python programming language, along with the yfinance and matplotlib libraries,
utilized for data retrieval, analysis, and visualization.

* This project focuses on the implement
Moving Average Convergence Divergence

The methodology involves calculating the MACD and signal line for a given stock, such as

A (Tesla), and determining buy and sell signals based on the MACD crossing above or

ow the signal line. The resulting signals were visualized on a plot, highlighting buy signals
h green upward-pointing triangles and sell signals with red downward-pointing triangles.

REFERENCES

Here are some references that can be useful for learning more about quiz generators:

* Got some of the reference from my friends,
i 'Some of ’the content is taken from Stock Tr

' (investopedia.com)

ing Bot: Coding Your Own Trading A
- o0

16

