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ABSTRACT

Agriculture is vital for human survival and remains a major driver of several economies around
the world; more so in underdeveloped and developing economies. With increasing demand for
food and cash crops, due to a growing global population and the challenges posedby climate
change, there is a pressing need to increase farm outputs while incurring minimal costs. Previous
machine vision technologies developed for selective weeding have faced the challenge of
reliable and accurate weed detection. We present approaches for plant seedlings classification
with a dataset that contains 4,275 images of approximately 960 unique plants belonging to 12
species at several growth stages. We compare the performances of two traditional algorithms
and a Convolutional Neural Network (CNN), a deep learning techniquewidely applied to image
recognition, for this task. Our findings show that CNN-driven seedling classification
applications when used in farming automation has the potential to optimize crop yield and

improve productivity and efficiency when designed appropriately
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Chapter 1: INTRODUCTION

1.1

AIM :To use deep learning in solving the real world agriculture related

problems .

1.1.1 Contextual Background

1.1.2

Plants continue to serve as a source of food and oxygen for all life on earth. In continents
like Africa, where agriculture is predominant, proper automation of the farming process
would help optimize crop yield and ensure continuous productivity and sustainability .
The transformation of the agricultural sector by use of smart farming methods can power
economic growth in many countries. According to [2], there is a strong link between

increased productivity and economic prosperity.

Problem Statement

In this work, we explore the performance of traditional computer vision methods on
this task and show that a Deep Convolutional Neural Network (CNN) does the best job at
classifying plant seedlings. In computer vision, CNNs have been known to be powerful
visual models that yield hierarchies of features enabling accurate segmentation. They are
also known to perform predictions relatively faster than other algorithms while

maintaining competitive performance at the same time
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1.2 Objectives and Scope

One major reason for reduction in crop yield is weed invasion on farmlands. Weeds
generally have no useful value in terms of food, nutrition or medicine yet they have
accelerated growth and parasitically compete with actual crops for nutrients and space.
Inefficient processes such as hand weeding has led to significant losses and increasing
costs due to manual labour [3]. Precision agriculture, with the goal of defining systems
that support decision-making in farm management in order to optimize returns onoutputs
while preserving resources, and weed control systems have been developed aiming at
optimizing yields and costs while minimizing environmental challenges;some robotic
systems have been used to do this [4]. The robots and the vision machines need to be able
to precisely and reliably detect a weed from the useful plants. Machine vision
technologies developed for selective weeding face a challenge of reliable and accurate
weed detection. It’s not easy to identify the weeds due to unclear crops boundaries, with
varying rocky or sandy backgrounds, and as a result, traditional classification methods

are likely to fail on this task [5].

1.3 Features

e Data Handling:
» The code loads training and testing images from specified directories
using Image Data Generator. Training images are resized to (80, 80)

pixels, converted to RGB, and normalized.
e Model Architecture:

» The code utilizes a pre-trained VGG19 model for transfer learning.

» Additional layers are added to the VGG19 model to create a custom
model (NewModel) for the specific classification task.

» The top layers of the VGG19 model are excluded, and new layers,

including dense layers, are added for fine-tuning.



Fine-Tuning and Freezing Layers:

>

The code freezes the layers of the pre-trained VGG19 model up to the last

five layers, allowing the model to retain knowledge from the pre- training.

Model Compilation and Training:

>

The model is compiled with the Adam optimizer and categorical cross-
entropy loss function.
The model is trained using the fit generator method with a specified

number of epochs.

Model Evaluation:

>
>

The trained model is used to make predictions on the test data.

Predictions are converted back to class names and stored in a DataFrame

(pred).

Plotting and Visualization:

>

>

Training history, including accuracy and loss over epochs, is plotted and
saved as an image (combined_plot.png).
The architecture of the original VGG19 model and the modified model

(NewModel) is visualized and saved as images.

HTML Display:

>

The code generates HTML code to display images and plots in the

notebook using base64 encoding.

Additional Information:

>

The code sets constants such as the number of epochs, batch size, and
the target shape for image resizing.
The code uses K-Fold cross-validation (KFold) but does not show the
specific use in the provided snippet.
The model is compiled with the Adam optimizer and trained using the

fit generator method.

10



1.4 Feasibility And System Requirement

Feasible Aspects:

1. Transfer Learning:
o Transfer learning using pre-trained models like VGG19 is a common and
feasible approach for image classification tasks. It allows leveraging

knowledge learned from large datasets.

N

Data Preprocessing:

e The code includes necessary preprocessing steps such as image resizing,
conversion to RGB, and normalization, which are essential for training deep
learning models.

3. Model Architecture:

e The model architecture, with additional layers for fine-tuning, is reasonable
for image classification tasks. It allows the model to learn specific features
relevant to plant seedling classification.

4. Training and Evaluation:

e The model is compiled with an appropriate optimizer and loss function.
Training and evaluation steps are included, and the model's performance is
assessed using accuracy and loss metrics.

5. Visualization:
e The code provides visualizations of the model architecture and training

history, aiding in understanding and debugging.

1.4.1 Hardware

Hardware Requirements:

1. GPU (Graphics Processing Unit):

e Deep learning models, especially those based on convolutional neural
networks (CNNs) like VGG19, can benefit significantly from GPU

acceleration. The code assumes access to a GPU for faster training. In

11



particular, training large models like VGG19 can be computationally

intensive, and a GPU can significantly speed up the process.
2. Sufficient RAM:
o Training deep learning models can be memory-intensive. Ensure that your
system has enough RAM to handle the size of the dataset and the

computational requirements of the model.

1.4.2 Software

Software Requirements:
1. Operating System:

e The code does not explicitly specify the operating system, but it appears to be
designed to run in an environment that supports the specified Python libraries
(TensorFlow, NumPy, Pandas, Matplotlib, Seaborn, etc.). The code includes
paths with directory structures compatible with Unix-like systems (e.g., Linux).

2. Python:

e The code is written in Python, so a Python interpreter is required. It's likely

that the code is intended to run with a version of Python 3.x.
3. Python Libraries:

e The code relies on several Python libraries, including TensorFlow, NumPy,
Pandas, Matplotlib, Seaborn, PIL (Pillow), and scikit-learn. Ensure that these
libraries are installed in your Python environment.

4. Jupyter Notebook:

e The code appears to be designed for execution in a Jupyter Notebook
environment. It uses Jupyter-specific display functions (display(HTMLY...)))
and assumes access to the IPython display capabilities.

5. Kaggle Environment:

e The code includes paths ('/kaggle/input/...") that are consistent with the

directory structure of a Kaggle kernel. It suggests that the code might have

been developed and tested on the Kaggle platform.

12



Chapter 2. Literature review

2.1 CNN

Convolutional Neural Networks (CNNs) have emerged as a groundbreaking
technology in the field of computer vision and image recognition. CNNs are specialized
neural networks designed to process and analyze visual data, making themparticularly
well-suited for tasks such as image classification, object detection, and segmentation.
The architecture of CNNs is inspired by the visual processing in the human brain,
featuring convolutional layers that automatically learn hierarchical representations from

the input data.
Key Points:

¢ C(CNNs have demonstrated exceptional performance in various image-related tasks,
surpassing traditional methods in accuracy and efficiency.

o Their ability to automatically learn hierarchical features through convolutional layers
makes them robust to variations in scale, orientation, and position.

o Convolutional Neural Networks (CNNs) are a class of deep neural networks specifically
designed for tasks involving images and spatial data. They have been particularly
successful in computer vision applications, including image recognition, object
detection, and image segmentation. CNNs are inspired by the organization and
functionality of the visual cortex in animals, and they excel at automatically learning
hierarchical features from raw input data.

Here are the key components and concepts of Convolutional Neural Networks:

1. Convolutional Layers:

The fundamental building block of CNNs is the convolutional layer. These layers apply
convolutional operations to input data using filters (also called kernels). Each filter
scans over the input data, performing element-wise multiplications and summations to
produce feature maps. These feature maps capture different aspects orpatterns in the

input, allowing the network to learn hierarchical representations.
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2. Pooling Layers:

Pooling layers are used to downsample the spatial dimensions of the input data. Max
pooling is a common technique where the maximum value from a group of neighboring
pixels is retained, reducing the spatial resolution and computational complexity. Pooling
helps make the representation more robust and invariant to smalltranslations and
distortions in the input data.

3. Activation Functions:

Activation functions introduce non-linearities into the network, allowing it to learn
complex mappings between input and output. Common activation functions used in
CNNs include Rectified Linear Unit (ReLU), which replaces negative values with
zero, promoting sparse activations and efficient learning.

4. Fully Connected Layers:

After several convolutional and pooling layers, CNNs typically end with one or more
fully connected layers. These layers combine the learned features and make final
predictions. In image classification tasks, the output layer often employs a softmax
activation function to produce class probabilities.

5. Stride and Padding:

Stride determines the step size of the filter as it moves across the input data during
convolution. Padding involves adding extra pixels around the input to prevent
information loss at the edges. These parameters influence the spatial dimensions ofthe
feature maps.

6. Hierarchical Feature Learning:

CNN s automatically learn hierarchical representations of features. Lower layers capture
simple patterns like edges and textures, while deeper layers combine thesepatterns to
form more complex and abstract features, enabling the network to recognize objects
and scenes.

7. Transfer Learning:

CNNs, especially pre-trained models on large datasets, can be used for transfer
learning. By leveraging the knowledge gained from one task (e.g., ImageNet
classification), the pre-trained model can be fine-tuned for a different task with a

smaller dataset.
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8. Applications:

CNNs find applications in various computer vision tasks, including image classification,
object detection, image segmentation, and facial recognition. They havealso been
successful in natural language processing tasks when applied to the analysis of

sequential data.

2.2 VG19

The VGG (Visual Geometry Group) architecture, specifically VGG19, is a widely
recognized deep CNN architecture that has made significant contributions to image
classification tasks. Developed by the Visual Geometry Group at the University of
Oxford, VGG19 is characterized by its simplicity and uniform architecture,
comprising 19 layers, including convolutional and fully connected layers. The
repeated use of small kernel sizes in convolutional layers allows VGG19 to capture
intricate features in the input images.

VGG19 gained prominence for its straightforward design, making it easy to
understand and implement.

The stacking of small convolutional filters contributes to the network's ability to learn
complex features with fewer parameters.

Despite its success, VGG19 is computationally expensive and may face challenges in
terms of memory usage and training time

VGG19 is a deep convolutional neural network architecture that belongs to the VGG
family, developed by the Visual Geometry Group at the University of Oxford. The
term "VGG" stands for Visual Geometry Group. The VGG architectures are known
for their simplicity and uniform structure, making them easy to understand and
implement. VGG19 specifically is characterized by its depth, consisting of 19 layers,

and it has been widely used for image classification tasks.
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Here are the key features of the VGG19 architecture:

1. Layer Configuration:

VGG19 has a straightforward architecture with a sequential stacking of convolutional
layers. The network comprises a series of convolutional layers, each followed by a max-
pooling layer for spatial down sampling. The depth of VGG19 is a result of stacking

multiple convolutional layers.

2. Small Convolutional Filters:

One distinctive feature of VGG architectures, including VGG19, is the use of small
3x3 convolutional filters. The repeated use of these small filters is shown to be effective
in capturing complex features and patterns in the input data. Convolutionallayers with
3x3 filters are used multiple times before spatial pooling is applied, contributing to the

hierarchical feature learning.

3. Uniform Architecture:

VGG19 maintains a uniform architecture throughout the network. The convolutional
layers are followed by max-pooling layers, and the fully connected layers are placed
at the end of the network. The simplicity and uniformity of the architecture make it

easy to understand and modify.

4. Fully Connected Layers:

After the convolutional and pooling layers, VGG19 has three fully connected layers,
followed by a softmax activation layer for classification. The fully connected layers at
the end of the network are responsible for combining high-level features learned by the

convolutional layers and making final predictions.

5. Model Depth:
VGG19's depth, with 19 layers, was considered deep at the time of its introduction,
contributing to its effectiveness in learning hierarchical representations. However,

deeper architectures have since been developed, such as ResNet and DenseNet.

16



2.3 Transfer Learning

Transfer learning is a machine learning technique where a model trained on one task is
adapted for a second related task. In the context of deep learning, transfer learning
involves taking a pre-trained neural network model and using it as a starting point for
a new but related task. Instead of training a deep neural network from scratch, transfer
learning leverages the knowledge gained from a source task to improve the learning

process on a target task.

Transfer learning is a machine learning technique where a model trained on one task is
adapted for a second related task. In the context of deep learning, transfer learning
involves taking a pre-trained neural network model and using it as a starting point for
a new but related task. Instead of training a deep neural network from scratch, transfer
learning leverages the knowledge gained from a source task to improve the learning

process on a target task.
Here's a breakdown of the key concepts in transfer learning:

Source Task:
In transfer learning, there is a source task for which a model is pre-trained on a large
dataset. This source task is usually a generic task with a large and diverse dataset.
Examples include image classification on ImageNet, language modeling on a large
corpus, or even tasks like object detection
1. Pre-Trained Model:

e The model trained on the source task is referred to as the pre-trained model.
This model has already learned useful features and patterns from the source task
data, capturing general representations that are transferable to other tasks.

2. Target Task:

o The target task is the specific task for which transfer learning is applied. It is
typically a related task to the source task but may have a smaller dataset or
slightly different characteristics.

3. Fine-Tuning or Feature Extraction:
e There are two main approaches to transfer learning: fine-tuning and feature

extraction.

17



Fine-Tuning: In fine-tuning, the pre-trained model is further trained on the
target task with the target dataset. This involves updating the weights of the
model to adapt to the specifics of the new task.

Feature Extraction: In feature extraction, the pre-trained model is used as a
fixed feature extractor. The early layers of the model, which capture more
generic features, are frozen, and only the later layers are trained on the target

task.

4. Benefits of Transfer Learning:

Data Efficiency: Transfer learning allows the model to benefit from the
knowledge gained on a large dataset, even when the target dataset is small.
Faster Convergence: Training a model from scratch can be time-consuming.
Transfer learning often leads to faster convergence since the model starts with
pre-learned features.

Improved Generalization: The pre-trained model has already learned generic

features, which can improve the model's ability to generalize to new tasks.

5. Domains of Transfer Learning:

Transfer learning is widely used in various domains, including computer
vision, natural language processing, and speech recognition. In computer
vision, for example, a model pre-trained on a large image dataset can be

adapted for specific image classification tasks.

6. Popular Pre-Trained Models:

In computer vision, popular pre-trained models include VGG, ResNet,
Inception, and MobileNet. In natural language processing, models like BERT

and GPT are commonly used for transfer learning.

18



Chapter 3. Preliminary design

3.1 Model Architecture

Model: "model”

Layer (type) Qutput Shape Param #
input_1 (Inputlayer) [{Mone, None, MNone, 3)] :]
blockl_convl (ConvZD) (None, Mone, None, 64) 1792
blockl_conv2 (Conw2D) (Mone, None, None, 64) 36928
blockl_pool (MaxPoolingZD) (None, None, None, 64) B
block2_convl (Conv2D) (Mone, None, None, 128) 73856
block2_conv2 (Conv2D) (Mone, None, None, 128) 147584
blockZ_pool (MaxPooling2D) (MNone, None, None, 128) @
block3_convl (Conv2D) (None, None, None, 256) 295168
block3_conv? (Conv2D) (MNone, Nene, None, 256) 598888
block3_convd (Conv2D) (None, None, None, 256) 558828
block3_convd (Conv2D) (None, None, None, 258) felel el ]
block3_pool (MaxPooling2D) (MNone, None, None, 256) B
block4_convl (Conv2D) (None, None, None, 512) 1188168
blockd_conv2 (Conv2D) (Mone, None, None, 512) 2355868
blockd_conv3 (ConvD) (Mone, Nene, None, 512) 2359868
blockd_convd (Conv2D) (Mone, None, None, 512) 2359888
block4_pool (MaxPooling2D) (MNone, None, None, 512) @
block5_convl (Conv2D) (None, None, None, 512) 2359888
block5_conv2 (ConvZD) (Mone, None, None, 512) 2359888
block5_convd (Conv2D) (None, None, None, 512) 2359888
blockS_convd [Conv2D) (None, None, Nome, 512) 2359888
block5_pool (MaxPooling2D) (Mone, None, None, 512) 8
global_average_pooling2d ( (Mone, 512) e
GlobalAveragePooling2D)
dense (Dense) (None, 1@24) 525312
dense_1 (Dense) (Mone, 1824) 1849688
dense_2 (Dense) (None, 512) 524888
dense_3 (Dense) (MNone, 12) 6156

Total params: 227138252 (84.47 MB)
Trainable params: 2185868 (8.83 MB)
Non-trainable params: 28824384 (76.39 MB)
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1. VGG19 Base Model:

VGG19_MODEL = VGG19(weights='imagenet', include_top=False)
The code imports the VGG19 model from Keras's applications module. This model is

pre-trained on the ImageNet dataset and is used as the base model.

2. Global Average Pooling and Dense Layers:

x=VGG19_MODEL .output
¥=GlobalAveragePooling2D( ) (x)

x=Dense (1024, activation="relu')(x) #we

x=Dense (16824, activation="relu')(x)
x=Dense (512, activation="'relu') (x)

preds=Dense(len(class_name_num), activation='softmax')(x) #final

The output from the VGG19 base model is passed through a global average pooling
layer. This layer reduces the spatial dimensions of the output.

Subsequently, there are three dense (fully connected) layers. These layers are added to
enable the model to learn more complex representations and classify the input data.
The number of neurons in these dense layers is gradually reduced, leading to a final
dense layer with the number of neurons equal to the number of classes in your
classification task.

The activation function used in the dense layers is ReLU (Rectified Linear Unit),
except for the final layer where softmax activation is used for multi-class

classification.

3. Creating the New Model:

NewModel=Model (inputs=VGG19_MODEL.input, outputs=preds)

NewModel. summary()
The Model class from Keras is used to create a new model by specifying the inputs
and outputs. The input is set as the input of the VGG19 base model, and the output is

set as the final dense layer.

20



4. Freezing Layers:

for layer in NewModel.layers[:-5]:
layer .trainable=False
NewModel . summary ()
This code freezes the layers of the VGG19 base model up to the last five layers. Freezing
means that the weights of these layers won't be updated during training. Thepurpose is
to retain the knowledge learned from ImageNet and fine-tune the model onthe specific

task.

5. Model Summary and Visualization:

NewModel . summary()

This code prints a summary of the architecture of the new model, including the layer

types, output shapes, and the number of parameters.

6. Model Compilation:

NewModel.compile(optimizer='Adam' 6 loss='categorical_crossentropy',6metrics=["accuracy'])
The model is compiled with the Adam optimizer, categorical crossentropy as the loss
function (commonly used for multi-class classification), and accuracy as the metric to

monitor during training.

7. Data Generator:

train_datagen=ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator=train_datagen.flow_from_directory(

pathToTrainData,

target_size=(88, 80)

color_mode='rgbh',

batch_size=32,

class_mode='categorical ',

shuffle=True
)i

An ImageDataGenerator is set up for data augmentation during training. It generates

batches of augmented images from the specified directory.

21



8. Model Training:

step_size_train=train_generator.n//train_generator.batch_size
history = NewModel.fit_generator(generator=train_generator,steps_per_epoch=step_size_ train, epochs=1
8);

e The model is trained using the generator created from the training data. The training

history, including loss and accuracy over epochs, is stored in the history variable.

9. Model Evaluation and Prediction:

predictions = NewModel.predict(
X_test,
batch_size=None,
verbose=8,
steps=None,
callbacks=None,
max_queue_size=18,
workers=1,

use_multiprocessing=False

predictions=pd.DataFrame(predictions)

e The trained model is used to make predictions on the test data (X test).

3.2 Activation Function
¢ Relu:

The Rectified Linear Unit, or ReLU for short, is one of the many activation
functions available to you for deep learning. What makes the ReL U activation

function stand out is its simplicity while being an incredibly powerful function.
While the name rectified linear unit may sound complex, the function is anything

but. At its core, the ReLU function applies a very straightforward rule: if the

input is greater than zero, it leaves it unchanged; otherwise, it sets itto zero.
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y=0

. Softmax

The softmax function is often used as the last activation function of a neural network
to normalize the output of a network to a probability distribution over predicted output

classes, based on Luce's choice axiom.

Softmax Function

08

0.6
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3.3 CODE:

!pip3 install -q seaborn tensorflow pillow scikit-learn pydot graphviz
# Standard Libraries
import os

import warnings

# External Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

from PIL import Image

from numpy import array, asarray

from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score, confusion_matrix

# TensorFlow and Keras
from tensorflow.keras import Sequential
from tensorflow .keras.layers import (
Dense,
Flatten,
Conv2D,
MaxPooling2D,
GlobalAveragePooling2D,
)
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg19 import VGG19

from tensorflow.keras.utils import plot model

24



from tensorflow.keras.applications.mobilenet import preprocess_input

# Other Utilities
import base64
from [Python.display import HTML, display

# Set seed and constants
np.random.seed(42)

kf = KFold(n_splits=5)
epochs =20

batch_size = 32

# Suppress warnings
warnings.filterwarnings("ignore")
pathToTrainData='/kaggle/input/plant-seedlings-classification/train'

pathToTestData ='/kaggle/input/plant-seedlings-classification/test'

training_img_list = list()

testing_img_list = list()

shape sum =0
class name num = dict()

train_avg_shape = 80

for dirname, , filenames in os.walk(pathToTrainData):
for filename in filenames:

img_data = Image.open(os.path.join(dirname, filename))

resizedlmage = img_data.resize((train_avg_shape, train_avg shape))
resizedlmage = resizedlmage.convert('RGB')

resizedlmage = asarray(resizedlmage)/255
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class label = dirname.split('/")[-1]
training_img_list.append([resizedIlmage, class label])
shape sum += np.max(img_data.size)

class name num|class label] = len(class name num)-1

for dirname, , filenames in os.walk(pathToTestData):
for filename in filenames:

img_data = Image.open(os.path.join(dirname, filename))

resizedlmage = img_data.resize((train_avg_shape, train_avg shape))
resizedlmage = resizedlmage.convert('RGB')

resizedlmage = asarray(resizedlmage)/255

testing_img_list.append([resizedlmage,filename])

X test = np.zeros((len(testing_img_list), train_avg_shape, train_avg_shape, 3),
dtype='float32")

for 1,img in enumerate(testing_img_list):
X test[i] = testing_img_list[i][0]
VGG19 MODEL = VGGI19(weights='imagenet', include top=False)
# Specify the path to save the plot
plot_path = 'Ykaggle/working/VGG19Original.png'
# Save the plot to the specified path

plot model(VGG19 MODEL, to_file=plot path, show_ shapes=True,
show_layer names=True)

# Check if the file exists before reading
if os.path.exists(plot_path):
with open(plot_path, "rb") as img_file:
img_data =img_file.read()
img_base64 = base64.b64encode(img_data).decode("utf-8")

26



html code =

<div style="background-color:white; border-radius:2px; border:#000000 solid;
padding: 15px; font-size:100%; text-align:center;">

<img src="data:image/png;base64,{img_base64}" style="display: block; margin:
0 auto;">

</div>
display(HTML(html_code))
else:

print(f"Error: File '{plot_path}' not found.")

VGG19_MODEL.summary()

print(f"VGG19 Model Layers Count : {len(VGG19 MODEL.layers)}")

x=VGG19 _MODEL.output
x=GlobalAveragePooling2D()(x)

x=Dense(1024,activation="relu')(x) #we add dense layers so that the model can learn
more complex functions and classify for better results.

x=Dense(1024,activation="relu')(x) #dense layer 2
x=Dense(512,activation="relu’)(x) #dense layer 3

preds=Dense(len(class name num), activation='softmax')(x) #final layer with
softmax activation

NewModel=Model(inputs=VGG19 MODEL.input,outputs=preds)
NewModel.summary()

print(f"New Model layers count :{len(NewModel.layers)}")

for layer in NewModel.layers[:-5]:

layer.trainable=False

NewModel.summary()
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plot path = '/kaggle/working/NewModel.png'
# Save the plot to the specified path

plot_model(NewModel, to_file=plot path, show_shapes=True,
show_layer names=True)

# Check if the file exists before reading
if os.path.exists(plot_path):
with open(plot_path, "rb") as img_file:
img_data = img_file.read()
img_base64 = base64.b64encode(img_data).decode("utf-8")

html code =

<div style="background-color:white; border-radius:2px; border:#000000 solid;
padding: 15px; font-size:100%; text-align:center;">

<img src="data:image/png;base64,{img base64}" style="display: block; margin:
0 auto;">

</div>
display(HTML(html_code))
else:

print(f"Error: File '{plot_path}' not found.")

train_datagen=ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator=train_datagen.flow from_directory(

pathToTrainData,

target size=(80,80),

color mode='rgb',

batch size=32,

class_mode='categorical’,

shuffle=True

NewModel.compile(optimizer='"Adam',loss='categorical crossentropy',metrics—=['accu
racy'])
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step_size train=train_generator.n//train_generator.batch_size

history =
NewModel.fit_generator(generator=train_generator,steps_per_epoch=step_size train,
epochs=10);

plt.plot(history.history['accuracy'])

plt.plot(history.history['loss'])

plt.title('Model loss and accuracy')

plt.xlabel("Epoch')

plt.legend(['accuracy','loss'], loc="upper right')

plt.savefig(‘combined plot.png’)

plt.close()

with open("combined plot.png", "rb") as img_file:
img_data = img_file.read()

img_base64 = base64.b64encode(img_data).decode("utf-8")

html code ="

<div style="background-color:white; border-radius:2px; border:#000000 solid;
padding: 15px; font-size:100%; text-align:center;">

<img src="data:image/png;base64,{img_base64}" style="display: block; margin: 0
auto;">

</div>

m

display(HTML(html code))

predictions = NewModel.predict(
X test,
batch_size=None,
verbose=0,
steps=None,
callbacks=None,
max_queue_size=10,
workers=1,

use_multiprocessing=False
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predictions=pd.DataFrame(predictions)

inverse label map = dict()

for k,v in train_generator.class_indices.items():
inverse label map[v] =k

pred label num = predictions.idxmax(axis=1)

pred label num_ new = list()

for x in pred label num:
y = inverse_label map[x]

pred label num new.append(y)

pred label num new = pd.DataFrame(pred_label num_new)

print(pred_label num_ new[0])

testimages = pd.DataFrame(testing img_list)
pred=pd.DataFrame()

pred["file"] = testImages[1]

pred["species"] = pred_label num_ new[0]

pred.head()
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Chapter 4. Final Analysis and design

4.1 result Analysis

We attempt to use a CNN for this problem. CNNs have been widely used for diverse image
classification tasks. We use two types of input sets; a first case where we pass in the original
image pixels and a second case where we performed OpenCV preprocessing of the input image
data as in the baseline. The neural network architecture has 6 convolutional layers.

Each is followed with a rectified linear unit (ReLU). The first two convolutional layers have 64
filters, the next has 128 while the last one has 256. Each convolutional layer has zero padding.
After each pair of convolutional layer, we have a max pooling layer for dimensionality reduction
and a 10% dropout to prevent over-fitting. At the end of the six convolutional layers are 3 fully
connected layers. The last fully connected layer has a softmaxactivation function which outputs
probability distribution for each of the 12 classes. We use Adam optimizer with a batch size of
32 for each step and a weighted cross-entropy loss, to handle the imbalanced number of pixels

for each class.

Model loss and accuracy
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4.2 Applications

An efficient deep learning model for seedlings classification can help farmers optimize crop
yields and significantly reduce losses. The model can detect and differentiate a weed from other
plants in the wild . The proposed system can be extended to work with robotic arms for

performing actual weeding operation in large farmlands.

4.3 Problems Faced

1. Training a model with a more inclusive dataset. For instance, using plant seedlings that are
more prevalent in African agriculture or other parts of the underdeveloped/developing world
other than that of Danish agriculture as provided in our dataset

Testing out the model using images with multiple plants in a scene. Although the advantageof
weeding during plant seedlings early stage is to minimize the challenges that come with
overlapping, it would be insightful to see how well the model identifies different classes of

plants and potentially predicting the ratio of the classes present.

4.4 Limitation

1. Overfitting:

o Fine-tuning a pre-trained model on a small dataset can lead to overfitting. The
model might memorize the limited training examples rather than generalizing
well to new, unseen data.

2. Limited Adaptability:

e Pre-trained models may not adapt well to unique characteristics of the target
dataset. Fine-tuning may be needed to adjust the model to specific features of
the new task.

3. Domain Shift:
o If the distribution of data in the target task differs significantly from the source

task, the pre-trained model may not perform well. This is known as domain shift.
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4. Computational Resources:
o Fine-tuning a large pre-trained model requires significant computational
resources. For resource-constrained environments, training a model from

scratch on a smaller dataset might be more practical.

4.5 Conclusion

We believe that with promising results in classifying plant seedlings, we will be able to
completely automate the process of weed control in large farms and thereby reducing costsand

manual labour while improving crop yield and productivity
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