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ABSTRACT 
 
 
 

Agriculture is vital for human survival and remains a major driver of several economies around 

the world; more so in underdeveloped and developing economies. With increasing demand for 

food and cash crops, due to a growing global population and the challenges posed by climate 

change, there is a pressing need to increase farm outputs while incurring minimal costs. Previous 

machine vision technologies developed for selective weeding have faced the challenge of 

reliable and accurate weed detection. We present approaches for plant seedlings classification 

with a dataset that contains 4,275 images of approximately 960 unique plants belonging to 12 

species at several growth stages. We compare the performances of two traditional algorithms 

and a Convolutional Neural Network (CNN), a deep learning technique widely applied to image 

recognition, for this task. Our findings show that CNN-driven seedling classification 

applications when used in farming automation has the potential to optimize crop yield and 

improve productivity and efficiency when designed appropriately 
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सार : 
 

कृिष मानव अİˑȕ के िलए महȕपूणŊ है और दुिनया भर की कई अथŊʩव˕ाओ ंका एक Ůमुख चालक बना Šआ है; अिवकिसत और 

िवकासशील अथŊʩव˕ाओ ंमŐ अिधक। बढ़ती वैिʷक आबादी और जलवायु पįरवतŊन से उȋɄ चुनौितयो ंके कारण खाȨ और नकदी फसलो ंकी 

बढ़ती मांग के साथ, Ɋूनतम लागत ◌ो◌ं को उठाते Šए कृिष उȋादन को बढ़ाने की आवʴकता है। चयनाȏक िनराई के िलए िवकिसत िपछली 

मशीन ̊िʼ ŮौȨोिगिकयो ंको िवʷसनीय और सटीक खरपतवार का पता लगाने की चुनौती का सामना करना पड़ा है।हम एक डेटासेट के साथ 

पौधो ंके रोपाई वगŎकरण के िलए ̊िʼकोण Ůˑुत करते हœ िजसमŐ कई िवकास चरणो ंमŐ 12 Ůजाितयो ंसे संबंिधत लगभग 960 अिȪतीय पौधो ं

की 4,275 छिवयां शािमल हœ। हम इस कायŊ के िलए दो पारंपįरक एʎोįरदम और एक कɋोʞूशनल Ɋूरल नेटवकŊ  (सीएनएन) के ŮदशŊन की 

तुलना करते हœ, जो छिव पहचान के िलए ʩापक ŝप से लागू एक गहरी सीखने की तकनीक है। हमारे िनʺषŊ बताते हœ िक सीएनएन-संचािलत 

अंकुर वगŎकरण अनुŮयोगो ंका उपयोग जब खेती ˢचालन मŐ िकया जाता है तो फसल को अनुकूिलत करने की Ɨमता होती है।
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Chapter 1: INTRODUCTION 

 

1.1 AIM :To use deep learning in solving the real world agriculture related 

problems . 

1.1.1 Contextual Background 

Plants continue to serve as a source of food and oxygen for all life on earth. In continents 

like Africa, where agriculture is predominant, proper automation of the farming process 

would help optimize crop yield and ensure continuous productivity and sustainability . 

The transformation of the agricultural sector by use of smart farming methods can power 

economic growth in many countries. According to [2], there is a strong link between 

increased productivity and economic prosperity. 

 

1.1.2 Problem Statement 

In this work, we explore the performance of traditional computer vision methods on 

this task and show that a Deep Convolutional Neural Network (CNN) does the best job at 

classifying plant seedlings. In computer vision, CNNs have been known to be powerful 

visual models that yield hierarchies of features enabling accurate segmentation. They are 

also known to perform predictions relatively faster than other algorithms while 

maintaining competitive performance at the same time 
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1.2 Objectives and Scope 
 
 

One major reason for reduction in crop yield is weed invasion on farmlands. Weeds 

generally have no useful value in terms of food, nutrition or medicine yet they have 

accelerated growth and parasitically compete with actual crops for nutrients and space. 

Inefficient processes such as hand weeding has led to significant losses and increasing 

costs due to manual labour [3]. Precision agriculture, with the goal of defining systems 

that support decision-making in farm management in order to optimize returns on outputs 

while preserving resources, and weed control systems have been developed aiming at 

optimizing yields and costs while minimizing environmental challenges; some robotic 

systems have been used to do this [4]. The robots and the vision machines need to be able 

to precisely and reliably detect a weed from the useful plants. Machine vision 

technologies developed for selective weeding face a challenge of reliable and accurate 

weed detection. It’s not easy to identify the weeds due to unclear crops boundaries, with 

varying rocky or sandy backgrounds, and as a result, traditional classification methods 

are likely to fail on this task [5]. 

 
 

1.3 Features 
 
 

 Data Handling:

 The code loads training and testing images from specified directories 

using Image Data Generator. Training images are resized to (80, 80) 

pixels, converted to RGB, and normalized. 

 Model Architecture:

 The code utilizes a pre-trained VGG19 model for transfer learning. 

 Additional layers are added to the VGG19 model to create a custom 

model (NewModel) for the specific classification task. 

 The top layers of the VGG19 model are excluded, and new layers, 

including dense layers, are added for fine-tuning. 
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 Fine-Tuning and Freezing Layers:

 The code freezes the layers of the pre-trained VGG19 model up to the last 

five layers, allowing the model to retain knowledge from the pre- training. 

 
 Model Compilation and Training:

 The model is compiled with the Adam optimizer and categorical cross- 

entropy loss function. 

 The model is trained using the fit_generator method with a specified 

number of epochs. 

 
 Model Evaluation:

 The trained model is used to make predictions on the test data. 

 Predictions are converted back to class names and stored in a DataFrame 

(pred). 

 Plotting and Visualization:

 Training history, including accuracy and loss over epochs, is plotted and 

saved as an image (combined_plot.png). 

 The architecture of the original VGG19 model and the modified model 

(NewModel) is visualized and saved as images. 

 
 HTML Display:

 The code generates HTML code to display images and plots in the 

notebook using base64 encoding. 

 
 Additional Information:

 The code sets constants such as the number of epochs, batch size, and 

the target shape for image resizing. 

 The code uses K-Fold cross-validation (KFold) but does not show the 

specific use in the provided snippet. 

 The model is compiled with the Adam optimizer and trained using the 

fit_generator method. 
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1.4 Feasibility And System Requirement 
 

Feasible Aspects: 
 
 

1. Transfer Learning: 

 Transfer learning using pre-trained models like VGG19 is a common and 

feasible approach for image classification tasks. It allows leveraging 

knowledge learned from large datasets. 

2. Data Preprocessing: 

 The code includes necessary preprocessing steps such as image resizing, 

conversion to RGB, and normalization, which are essential for training deep 

learning models. 

3. Model Architecture: 

 The model architecture, with additional layers for fine-tuning, is reasonable 

for image classification tasks. It allows the model to learn specific features 

relevant to plant seedling classification. 

4. Training and Evaluation: 

 The model is compiled with an appropriate optimizer and loss function. 

Training and evaluation steps are included, and the model's performance is 

assessed using accuracy and loss metrics. 

5. Visualization: 

 The code provides visualizations of the model architecture and training 

history, aiding in understanding and debugging. 

 
 
 

1.4.1 Hardware 

Hardware Requirements: 

1. GPU (Graphics Processing Unit): 

 Deep learning models, especially those based on convolutional neural 

networks (CNNs) like VGG19, can benefit significantly from GPU 

acceleration. The code assumes access to a GPU for faster training. In 
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particular, training large models like VGG19 can be computationally 

intensive, and a GPU can significantly speed up the process. 

2. Sufficient RAM: 

 Training deep learning models can be memory-intensive. Ensure that your 

system has enough RAM to handle the size of the dataset and the 

computational requirements of the model. 

 
1.4.2 Software 

 

Software Requirements: 

1. Operating System: 

 The code does not explicitly specify the operating system, but it appears to be 

designed to run in an environment that supports the specified Python libraries 

(TensorFlow, NumPy, Pandas, Matplotlib, Seaborn, etc.). The code includes 

paths with directory structures compatible with Unix-like systems (e.g., Linux). 

2. Python: 

 The code is written in Python, so a Python interpreter is required. It's likely 

that the code is intended to run with a version of Python 3.x. 

3. Python Libraries: 

 The code relies on several Python libraries, including TensorFlow, NumPy, 

Pandas, Matplotlib, Seaborn, PIL (Pillow), and scikit-learn. Ensure that these 

libraries are installed in your Python environment. 

4. Jupyter Notebook: 

 The code appears to be designed for execution in a Jupyter Notebook 

environment. It uses Jupyter-specific display functions (display(HTML(...))) 

and assumes access to the IPython display capabilities. 

5. Kaggle Environment: 

 The code includes paths ('/kaggle/input/...') that are consistent with the 

directory structure of a Kaggle kernel. It suggests that the code might have 

been developed and tested on the Kaggle platform. 
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Chapter 2. Literature review 
 

2.1 CNN 
 

Convolutional Neural Networks (CNNs) have emerged as a groundbreaking 

technology in the field of computer vision and image recognition. CNNs are specialized 

neural networks designed to process and analyze visual data, making them particularly 

well-suited for tasks such as image classification, object detection, and segmentation. 

The architecture of CNNs is inspired by the visual processing in the human brain, 

featuring convolutional layers that automatically learn hierarchical representations from 

the input data. 

 
Key Points: 

 
 

 CNNs have demonstrated exceptional performance in various image-related tasks, 

surpassing traditional methods in accuracy and efficiency. 

 Their ability to automatically learn hierarchical features through convolutional layers 

makes them robust to variations in scale, orientation, and position. 

 Convolutional Neural Networks (CNNs) are a class of deep neural networks specifically 

designed for tasks involving images and spatial data. They have been particularly 

successful in computer vision applications, including image recognition, object 

detection, and image segmentation. CNNs are inspired by the organization and 

functionality of the visual cortex in animals, and they excel at automatically learning 

hierarchical features from raw input data. 

Here are the key components and concepts of Convolutional Neural Networks: 
 
 

1. Convolutional Layers: 

The fundamental building block of CNNs is the convolutional layer. These layers apply 

convolutional operations to input data using filters (also called kernels). Each filter 

scans over the input data, performing element-wise multiplications and summations to 

produce feature maps. These feature maps capture different aspects or patterns in the 

input, allowing the network to learn hierarchical representations. 
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2. Pooling Layers: 

Pooling layers are used to downsample the spatial dimensions of the input data. Max 

pooling is a common technique where the maximum value from a group of neighboring 

pixels is retained, reducing the spatial resolution and computational complexity. Pooling 

helps make the representation more robust and invariant to small translations and 

distortions in the input data. 

3. Activation Functions: 

Activation functions introduce non-linearities into the network, allowing it to learn 

complex mappings between input and output. Common activation functions used in 

CNNs include Rectified Linear Unit (ReLU), which replaces negative values with 

zero, promoting sparse activations and efficient learning. 

4. Fully Connected Layers: 

After several convolutional and pooling layers, CNNs typically end with one or more 

fully connected layers. These layers combine the learned features and make final 

predictions. In image classification tasks, the output layer often employs a softmax 

activation function to produce class probabilities. 

5. Stride and Padding: 

Stride determines the step size of the filter as it moves across the input data during 

convolution. Padding involves adding extra pixels around the input to prevent 

information loss at the edges. These parameters influence the spatial dimensions of the 

feature maps. 

6. Hierarchical Feature Learning: 

CNNs automatically learn hierarchical representations of features. Lower layers capture 

simple patterns like edges and textures, while deeper layers combine these patterns to 

form more complex and abstract features, enabling the network to recognize objects 

and scenes. 

7. Transfer Learning: 

CNNs, especially pre-trained models on large datasets, can be used for transfer 

learning. By leveraging the knowledge gained from one task (e.g., ImageNet 

classification), the pre-trained model can be fine-tuned for a different task with a 

smaller dataset. 
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8. Applications: 

CNNs find applications in various computer vision tasks, including image classification, 

object detection, image segmentation, and facial recognition. They have also been 

successful in natural language processing tasks when applied to the analysis of 

sequential data. 

 
 
 

2.2 VG19 
 

 The VGG (Visual Geometry Group) architecture, specifically VGG19, is a widely 

recognized deep CNN architecture that has made significant contributions to image 

classification tasks. Developed by the Visual Geometry Group at the University of 

Oxford, VGG19 is characterized by its simplicity and uniform architecture, 

comprising 19 layers, including convolutional and fully connected layers. The 

repeated use of small kernel sizes in convolutional layers allows VGG19 to capture 

intricate features in the input images. 

 VGG19 gained prominence for its straightforward design, making it easy to 

understand and implement. 

 The stacking of small convolutional filters contributes to the network's ability to learn 

complex features with fewer parameters. 

 Despite its success, VGG19 is computationally expensive and may face challenges in 

terms of memory usage and training time 

 VGG19 is a deep convolutional neural network architecture that belongs to the VGG 

family, developed by the Visual Geometry Group at the University of Oxford. The 

term "VGG" stands for Visual Geometry Group. The VGG architectures are known 

for their simplicity and uniform structure, making them easy to understand and 

implement. VGG19 specifically is characterized by its depth, consisting of 19 layers, 

and it has been widely used for image classification tasks. 
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Here are the key features of the VGG19 architecture: 
 
 

1. Layer Configuration: 

VGG19 has a straightforward architecture with a sequential stacking of convolutional 

layers. The network comprises a series of convolutional layers, each followed by a max-

pooling layer for spatial down sampling. The depth of VGG19 is a result of stacking 

multiple convolutional layers. 

 
2. Small Convolutional Filters: 

One distinctive feature of VGG architectures, including VGG19, is the use of small 

3x3 convolutional filters. The repeated use of these small filters is shown to be effective 

in capturing complex features and patterns in the input data. Convolutional layers with 

3x3 filters are used multiple times before spatial pooling is applied, contributing to the 

hierarchical feature learning. 

 
3. Uniform Architecture: 

VGG19 maintains a uniform architecture throughout the network. The convolutional 

layers are followed by max-pooling layers, and the fully connected layers are placed 

at the end of the network. The simplicity and uniformity of the architecture make it 

easy to understand and modify. 

 
4. Fully Connected Layers: 

After the convolutional and pooling layers, VGG19 has three fully connected layers, 

followed by a softmax activation layer for classification. The fully connected layers at 

the end of the network are responsible for combining high-level features learned by the 

convolutional layers and making final predictions. 

 
5. Model Depth: 

VGG19's depth, with 19 layers, was considered deep at the time of its introduction, 

contributing to its effectiveness in learning hierarchical representations. However, 

deeper architectures have since been developed, such as ResNet and DenseNet. 
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2.3 Transfer Learning 

Transfer learning is a machine learning technique where a model trained on one task is 

adapted for a second related task. In the context of deep learning, transfer learning 

involves taking a pre-trained neural network model and using it as a starting point for 

a new but related task. Instead of training a deep neural network from scratch, transfer 

learning leverages the knowledge gained from a source task to improve the learning 

process on a target task. 

 
Transfer learning is a machine learning technique where a model trained on one task is 

adapted for a second related task. In the context of deep learning, transfer learning 

involves taking a pre-trained neural network model and using it as a starting point for 

a new but related task. Instead of training a deep neural network from scratch, transfer 

learning leverages the knowledge gained from a source task to improve the learning 

process on a target task. 

 
Here's a breakdown of the key concepts in transfer learning: 

 
 

Source Task: 

In transfer learning, there is a source task for which a model is pre-trained on a large 

dataset. This source task is usually a generic task with a large and diverse dataset. 

Examples include image classification on ImageNet, language modeling on a large 

corpus, or even tasks like object detection 

1. Pre-Trained Model: 

 The model trained on the source task is referred to as the pre-trained model. 

This model has already learned useful features and patterns from the source task 

data, capturing general representations that are transferable to other tasks. 

2. Target Task: 

 The target task is the specific task for which transfer learning is applied. It is 

typically a related task to the source task but may have a smaller dataset or 

slightly different characteristics. 

3. Fine-Tuning or Feature Extraction: 

 There are two main approaches to transfer learning: fine-tuning and feature 

extraction. 
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 Fine-Tuning: In fine-tuning, the pre-trained model is further trained on the 

target task with the target dataset. This involves updating the weights of the 

model to adapt to the specifics of the new task. 

 Feature Extraction: In feature extraction, the pre-trained model is used as a 

fixed feature extractor. The early layers of the model, which capture more 

generic features, are frozen, and only the later layers are trained on the target 

task. 

4. Benefits of Transfer Learning: 

 Data Efficiency: Transfer learning allows the model to benefit from the 

knowledge gained on a large dataset, even when the target dataset is small. 

 Faster Convergence: Training a model from scratch can be time-consuming. 

Transfer learning often leads to faster convergence since the model starts with 

pre-learned features. 

 Improved Generalization: The pre-trained model has already learned generic 

features, which can improve the model's ability to generalize to new tasks. 

5. Domains of Transfer Learning: 

 Transfer learning is widely used in various domains, including computer 

vision, natural language processing, and speech recognition. In computer 

vision, for example, a model pre-trained on a large image dataset can be 

adapted for specific image classification tasks. 

6. Popular Pre-Trained Models: 

 In computer vision, popular pre-trained models include VGG, ResNet, 

Inception, and MobileNet. In natural language processing, models like BERT 

and GPT are commonly used for transfer learning. 
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Chapter 3.  Preliminary design 
 

3.1 Model Architecture 
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1. VGG19 Base Model: 
 

The code imports the VGG19 model from Keras's applications module. This model is 

pre-trained on the ImageNet dataset and is used as the base model. 
 

2. Global Average Pooling and Dense Layers: 
 

 The output from the VGG19 base model is passed through a global average pooling 

layer. This layer reduces the spatial dimensions of the output. 

 Subsequently, there are three dense (fully connected) layers. These layers are added to 

enable the model to learn more complex representations and classify the input data. 

 The number of neurons in these dense layers is gradually reduced, leading to a final 

dense layer with the number of neurons equal to the number of classes in your 

classification task. 

 The activation function used in the dense layers is ReLU (Rectified Linear Unit), 

except for the final layer where softmax activation is used for multi-class 

classification. 

 
3. Creating the New Model: 

 The Model class from Keras is used to create a new model by specifying the inputs 

and outputs. The input is set as the input of the VGG19 base model, and the output is 

set as the final dense layer. 
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4. Freezing Layers: 
 
 

 This code freezes the layers of the VGG19 base model up to the last five layers. Freezing 

means that the weights of these layers won't be updated during training. The purpose is 

to retain the knowledge learned from ImageNet and fine-tune the model on the specific 

task. 

 
5. Model Summary and Visualization: 

 This code prints a summary of the architecture of the new model, including the layer 

types, output shapes, and the number of parameters. 

 
6. Model Compilation: 

 The model is compiled with the Adam optimizer, categorical crossentropy as the loss 

function (commonly used for multi-class classification), and accuracy as the metric to 

monitor during training. 

 
7. Data Generator: 

 An ImageDataGenerator is set up for data augmentation during training. It generates 

batches of augmented images from the specified directory. 
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8. Model Training: 

 The model is trained using the generator created from the training data. The training 

history, including loss and accuracy over epochs, is stored in the history variable. 

 
 

9. Model Evaluation and Prediction: 
 

 The trained model is used to make predictions on the test data (X_test). 
 
 

 
3.2 Activation Function 

 Relu: 
The Rectified Linear Unit, or ReLU for short, is one of the many activation 

functions available to you for deep learning. What makes the ReLU activation 

function stand out is its simplicity while being an incredibly powerful function. 

 
While the name rectified linear unit may sound complex, the function is anything 

but. At its core, the ReLU function applies a very straightforward rule: if the 

input is greater than zero, it leaves it unchanged; otherwise, it sets it to zero. 
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 Softmax 
 

The softmax function is often used as the last activation function of a neural network 

to normalize the output of a network to a probability distribution over predicted output 

classes, based on Luce's choice axiom. 
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3.3 CODE: 
 

!pip3 install -q seaborn tensorflow pillow scikit-learn pydot graphviz 

# Standard Libraries 

import os 

import warnings 

 
# External Libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import tensorflow as tf 

from PIL import Image 

from numpy import array, asarray 

from sklearn.model_selection import KFold 

from sklearn.metrics import accuracy_score, confusion_matrix 
 
 

# TensorFlow and Keras 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import ( 

Dense, 

Flatten, 

Conv2D, 

MaxPooling2D, 

GlobalAveragePooling2D, 

) 

from tensorflow.keras.models import Model 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.applications.vgg19 import VGG19 

from tensorflow.keras.utils import plot_model 
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from tensorflow.keras.applications.mobilenet import preprocess_input 
 
 

# Other Utilities 

import base64 

from IPython.display import HTML, display 
 
 

# Set seed and constants 

np.random.seed(42) 

kf = KFold(n_splits=5) 

epochs = 20 

batch_size = 32 
 
 

# Suppress warnings 

warnings.filterwarnings("ignore") 

 
pathToTrainData='/kaggle/input/plant-seedlings-classification/train' 

pathToTestData ='/kaggle/input/plant-seedlings-classification/test' 

 
training_img_list = list() 

testing_img_list = list() 

 

shape_sum = 0 

class_name_num = dict() 

train_avg_shape = 80 

 
for dirname, _, filenames in os.walk(pathToTrainData): 

for filename in filenames: 

img_data = Image.open(os.path.join(dirname, filename)) 
 
 

resizedImage = img_data.resize((train_avg_shape, train_avg_shape)) 

resizedImage = resizedImage.convert('RGB') 

resizedImage = asarray(resizedImage)/255 
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class_label = dirname.split('/')[-1] 

training_img_list.append([resizedImage, class_label]) 

shape_sum += np.max(img_data.size) 

class_name_num[class_label] = len(class_name_num)-1 

 
 
 

for dirname, _, filenames in os.walk(pathToTestData): 

for filename in filenames: 

img_data = Image.open(os.path.join(dirname, filename)) 
 
 

resizedImage = img_data.resize((train_avg_shape, train_avg_shape)) 

resizedImage = resizedImage.convert('RGB') 

resizedImage = asarray(resizedImage)/255 
 
 

testing_img_list.append([resizedImage,filename]) 
 
 

X_test = np.zeros((len(testing_img_list), train_avg_shape, train_avg_shape, 3), 
dtype='float32') 

for i,img in enumerate(testing_img_list): 

X_test[i] = testing_img_list[i][0] 

VGG19_MODEL = VGG19(weights='imagenet', include_top=False) 

# Specify the path to save the plot 

plot_path = '/kaggle/working/VGG19Original.png' 

# Save the plot to the specified path 

plot_model(VGG19_MODEL, to_file=plot_path, show_shapes=True, 
show_layer_names=True) 

# Check if the file exists before reading 

if os.path.exists(plot_path): 

with open(plot_path, "rb") as img_file: 

img_data = img_file.read() 

img_base64 = base64.b64encode(img_data).decode("utf-8") 
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html_code = f''' 

<div style="background-color:white; border-radius:2px; border:#000000 solid; 
padding: 15px; font-size:100%; text-align:center;"> 

<img src="data:image/png;base64,{img_base64}" style="display: block; margin: 
0 auto;"> 

</div> 

''' 

display(HTML(html_code)) 

else: 

print(f"Error: File '{plot_path}' not found.") 
 
 

VGG19_MODEL.summary() 
 
 

print(f"VGG19 Model Layers Count :{len(VGG19_MODEL.layers)}") 
 
 

x=VGG19_MODEL.output 

x=GlobalAveragePooling2D()(x) 

x=Dense(1024,activation='relu')(x) #we add dense layers so that the model can learn 
more complex functions and classify for better results. 

x=Dense(1024,activation='relu')(x) #dense layer 2 

x=Dense(512,activation='relu')(x) #dense layer 3 

preds=Dense(len(class_name_num), activation='softmax')(x) #final layer with 
softmax activation 

NewModel=Model(inputs=VGG19_MODEL.input,outputs=preds) 

NewModel.summary() 

 
print(f"New Model layers count :{len(NewModel.layers)}") 

 
 

for layer in NewModel.layers[:-5]: 

layer.trainable=False 

 

NewModel.summary() 
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plot_path = '/kaggle/working/NewModel.png' 

# Save the plot to the specified path 

plot_model(NewModel, to_file=plot_path, show_shapes=True, 
show_layer_names=True) 

# Check if the file exists before reading 

if os.path.exists(plot_path): 

with open(plot_path, "rb") as img_file: 

img_data = img_file.read() 

img_base64 = base64.b64encode(img_data).decode("utf-8") 
 
 

html_code = f''' 

<div style="background-color:white; border-radius:2px; border:#000000 solid; 
padding: 15px; font-size:100%; text-align:center;"> 

<img src="data:image/png;base64,{img_base64}" style="display: block; margin: 
0 auto;"> 

</div> 

''' 

display(HTML(html_code)) 

else: 

print(f"Error: File '{plot_path}' not found.") 
 
 

train_datagen=ImageDataGenerator(preprocessing_function=preprocess_input) 

train_generator=train_datagen.flow_from_directory( 

pathToTrainData, 

target_size=(80,80), 

color_mode='rgb', 

batch_size=32, 

class_mode='categorical', 

shuffle=True 

) 
 
 

NewModel.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accu 
racy']) 
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step_size_train=train_generator.n//train_generator.batch_size 

history = 
NewModel.fit_generator(generator=train_generator,steps_per_epoch=step_size_train, 
epochs=10); 

 
 

plt.plot(history.history['accuracy']) 

plt.plot(history.history['loss']) 

plt.title('Model loss and accuracy') 

plt.xlabel('Epoch') 

plt.legend(['accuracy','loss'], loc='upper right') 

plt.savefig('combined_plot.png') 

plt.close() 

with open("combined_plot.png", "rb") as img_file: 

img_data = img_file.read() 

img_base64 = base64.b64encode(img_data).decode("utf-8") 

html_code = f''' 

<div style="background-color:white; border-radius:2px; border:#000000 solid; 
padding: 15px; font-size:100%; text-align:center;"> 

<img src="data:image/png;base64,{img_base64}" style="display: block; margin: 0 
auto;"> 

</div> 

''' 

display(HTML(html_code)) 
 
 

predictions = NewModel.predict( 

X_test, 

batch_size=None, 

verbose=0, 

steps=None, 

callbacks=None, 

max_queue_size=10, 

workers=1, 

use_multiprocessing=False 
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) 
 
 

predictions=pd.DataFrame(predictions) 
 
 

inverse_label_map = dict() 

for k,v in train_generator.class_indices.items(): 

inverse_label_map[v] = k 

pred_label_num = predictions.idxmax(axis=1) 

pred_label_num_new = list() 

 

for x in pred_label_num: 

y = inverse_label_map[x] 

pred_label_num_new.append(y) 

 
pred_label_num_new = pd.DataFrame(pred_label_num_new) 

print(pred_label_num_new[0]) 

 
testImages = pd.DataFrame(testing_img_list) 

pred=pd.DataFrame() 

pred["file"] = testImages[1] 

pred["species"] = pred_label_num_new[0] 

pred.head() 
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Chapter 4. Final Analysis and design 

4.1 result Analysis 

We attempt to use a CNN for this problem. CNNs have been widely used for diverse image 

classification tasks. We use two types of input sets; a first case where we pass in the original 

image pixels and a second case where we performed OpenCV preprocessing of the input image 

data as in the baseline. The neural network architecture has 6 convolutional layers. 

Each is followed with a rectified linear unit (ReLU). The first two convolutional layers have 64 

filters, the next has 128 while the last one has 256. Each convolutional layer has zero padding. 

After each pair of convolutional layer, we have a max pooling layer for dimensionality reduction 

and a 10% dropout to prevent over-fitting. At the end of the six convolutional layers are 3 fully 

connected layers. The last fully connected layer has a softmax activation function which outputs 

probability distribution for each of the 12 classes. We use Adam optimizer with a batch size of 

32 for each step and a weighted cross-entropy loss, to handle the imbalanced number of pixels 

for each class. 
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4.2 Applications 

An efficient deep learning model for seedlings classification can help farmers optimize crop 

yields and significantly reduce losses. The model can detect and differentiate a weed from other 

plants in the wild . The proposed system can be extended to work with robotic arms for 

performing actual weeding operation in large farmlands. 

 
4.3 Problems Faced 

1. Training a model with a more inclusive dataset. For instance, using plant seedlings that are 

more prevalent in African agriculture or other parts of the underdeveloped/developing world 

other than that of Danish agriculture as provided in our dataset 

Testing out the model using images with multiple plants in a scene. Although the advantage of 

weeding during plant seedlings early stage is to minimize the challenges that come with 

overlapping, it would be insightful to see how well the model identifies different classes of 

plants and potentially predicting the ratio of the classes present. 

 

4.4 Limitation 
 

1. Overfitting: 

 Fine-tuning a pre-trained model on a small dataset can lead to overfitting. The 

model might memorize the limited training examples rather than generalizing 

well to new, unseen data. 

2. Limited Adaptability: 

 Pre-trained models may not adapt well to unique characteristics of the target 

dataset. Fine-tuning may be needed to adjust the model to specific features of 

the new task. 

3. Domain Shift: 

 If the distribution of data in the target task differs significantly from the source 

task, the pre-trained model may not perform well. This is known as domain shift. 
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4. Computational Resources: 

 Fine-tuning a large pre-trained model requires significant computational 

resources. For resource-constrained environments, training a model from 

scratch on a smaller dataset might be more practical. 

4.5 Conclusion 

We believe that with promising results in classifying plant seedlings, we will be able to 

completely automate the process of weed control in large farms and thereby reducing costs and 

manual labour while improving crop yield and productivity 
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