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" ABSTRACT

In this work, we have tried to make a machine learning model for predicting the price of cars. Since this is a
regression problem, So, to implement this task we can use many machine learning techniques like Linear
Regression, Lasso Regularisation, Ridge Regularisation, Elastic Net Regression, e.t.c. But in this work, we
will primarily focus on a deep learning (which is a subset of machine learning) model Simple Feed Forward
Neural Network (a type of Artificial Neural Network) for Car Price Prediction with various optimizers like
Adam, RMSprop, Adagrad, Adadelta, Nadam, e.t.c. and also compare the performance of these optimizers.
This model can help us in predicting the price of cars especially in case of purchasing a second hand car

according to the brand and features of the car.

Keyword: Machine learning, Regression problem, Linear Regression, Lasso Regularisation, Ridge
Regularisation, Elastic Net Regression, Deep Learning, Simple Feed Forward Neural Network, Artificial
Neural Network, Car Price Prediction, optimizers, Adam, RMSprop, Adagrad, Adadelta, Nadam.
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Chapter 1: INTRODUCTION

In today’s world, car is a common household thing which can be found in almost every elite and middle class
family. It is a dream of every middle class family to have atleast 1 four wheeler but since it is a very expensive
commodity, it is difficult for them to afford a brand new car. So, they normally try to purchase a second hand
car. But in case of second hand car, it is difficult for them to guess how much should it cost according to its
brand, average, fuel type, mileage, engine power and other features. So, for this a technology is required to
predict the price of the car according to its brand and concerned features.

Sd, to solve this problem, I have tried to make a deep learning Simple Feed Forward Neural Network model
by training the model on a car dataset by taking various important features as primary concern. In this work,
we have used various optimizers and at last we have also discussed the performance of these optimizers.

-



Chapter 2: Related Work

Many people have done researches on implementing machine learning models for predicting the price of cars.
For this they have performed various techniques. Some of the works are given below:

1.

]

Gegic and Isakovic tricd to predict the price of cars by using various supervised learning methods.
They focused on various features like fuel, power, years e.t.c. and achieved a good accuracy. [1]
Sharma and Sharma used simple linear regression method and predicted the price of cars using the
various features like distance travelled, fuel type, transmission, years used, e.t.c. and achieved the
good r2 score. [2]

Pandit and Parekh used various machine learning techniques to predict the car price and concludes
that decision tree as the best performer for this task. (3]

Rane and Pandaya used various supervised learning techniques like linear, ridge and lasso regression
for predicting the prices.of used cars. [4]

Agrahari and Chaubey considered various features of cars like mileage, power, engine, seats, e.t.c.
and used these features to predict the price of cars. [5]

Samruddhi and Kumar tried to deal with the task of predicting car price for small datasets by using k
nearest neighbour. [6]

Kiran and Kala used various machine learning algorithms like decision tree, random forest and voting
classifier for price prediction of used cars. [7]

Noor and Jan tried to predict the price of different vehicles using multiple linear regression. [8]
Nikhade and Borde used various regression algorithms for predicting the price of car by taking year,
present price, distance driven e.t.c. as input. [9]



Chapter 3 : About Dataset

In this work, T have used a car dataset which includes all the concerned featured which are necessary for
predicting the price of cars. In this dataset, cars of various brands arc included.

This dataset have 122 rows and 47 columns. The name of the columns of this dataset are ['Brand_Audi',

'Brand BMW, "Brand_Fiat', '‘Brand_Ford',
'Brand_Honda',Brand_Hyundai','Brand_Jaguar',Brand_Land',Brand_Mahindra',/Brand_Maruti',
'Brand_Mercedes-Benz), 'Brand_Mitsubishi',Brand_Nissan',

'Brand_Renault',Brand_Skoda','Brand_Tata','Brand_Toyota','Brand_Volkswagen','Brand_Volvo','FuelType_
Diesel', FuelType_Petrol', TransmissionType_Manual', 'Body Type_Convertible','Body Type_Coupe', 'Body
Type_Hatchback’, "Body Type Minivan','Body Type Pickup Truck’, 'Body- Type_SUV', 'Body
Type_Sedan','ARAI Mileage', 'Engine Displacement (cc)', 'No. of cylinder','Max Power (kW)', 'Max Torque
(Nm)', 'Seating Capacity','Fuel Tank Capacity', 'Power Steering', 'Power Windows Front','Anti Lock Braking
System', 'Air Conditioner', 'Driver Airbag',Passenger Airbag', 'Automatic Climate Control', 'Fog Lights -
Front','Alloy Wheels', 'Price', 'Ground Clearance Unladen']. '

The first five rows of this dataset are :

Unnamed& Brand_Audi Brand_BMW Brand_Fiat Brand_Ford Brand_Honda Brand Hyundal Brand_Jaguar Brand_Land Brand_Mahindra ... Wl::av\::sr Brz
, Front sy
0 0 00 00 00 00 00 00 00 00 { 00 .. 10
1 1 00 00 00 09 00 00 00 00 00 10
2 2 00 00 00 0.0 00 00 0.0 0.0 00 .. 1.0
3 3 00 00 00 00 0.0 00 0.0 00 00 .. 1.0
4 4 0.0 00 00 00 00 00 00 00 00 . 10
5 rows * 48 columns
Anti Fog
Hyundal Brand_Jaguar Brand_Land Brand_Mahindra .. M:g:?:\% Bu';(?:: con dillor?el: lﬂdrg:; PassAelr:;qr Augia,:;g nghts- W::I:IZ Price 'CE?EEEE
System Front
0.0 00 0.0 00 .. 10 10 10 1.0 1.0 10 1.0, 10 7510000 689.200000
00 00 00 00 . 10 10 10 1.0 10 10 00 10 10295000 204095238
00 00 0.0 00 . 10 10 10 10 10 10 10 10 11215000 204 095238
00 00 0.0 00 .. 10 10 10 1.0 10 10 10 10 7950000 174 250000
00 0.0 00 00 .. 1.0 1.0 1.0 1.0 10 10 10 1.0 13895000 210000000
Fig 3.1

In this dataset, in each row, the value of the brand of the concerned car is 1 and other brands have value 0.
We have tried to find out the relationships between different columns of this data set by using correlation[24].

The correlation Heatmap[25] of this data set is following :
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The correlation heatmap between different brands of car for this dataset :
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Fig 3.3
The whole description of this dataset is represented though the following figures:

P
Brand_Audi Brand_BMW Brand_Fiat Brand_Ford Brand_Honda Brand_Hyundal Brand_Jaguar Brand_Land Brand_Mahindra Brand_Marutl .. Winc
- i
count 122000000 122000000 122000000 122000000 122 000000 122000000 122000000  122.000000 122000000 122000000 .. 12200
mean 0073770 009361 0008187 0024590 0024590 0098361 0016393 0016393 0114754 0122951 095
std 0262475 0299030 0090536  0.15551 0155511 0.299030 0127507  0.127507 0.320039 0320735 .. 019
i 0000000 0000000 0000000 0 0O0O0O 0000000 0000000 0000000 0000000 0000000 0000000 000
25% 0000000 0000000 0000000  0.000000 0.000000 0.000000 0000000  0.000000 0.000000 0000000 .. 100
% 0000000 0000000 0O0J0000  0.000000 0006000 0.000000 0000000  0.000000 0000000 0000000 _. 100
7E%  000D000 0000000  0.000000 0000000 0.000000 0000000 0000000  0.000000 0.000000 0000000 .. 100
nax UOOUU0 1000000 1000000  1.000000 1.000000 1000000 1000000  1.000000 1,000000 1000000 .. 100

8 rows = 47 columns

Power Antl Lock . Automatic Ground
Brand_Mahindra Brand_Maruti .. Windows Braking (. .. N: AID’:;:" P”;'j"mn‘" Climate F°0 Lllf‘::r'\‘l WP?"‘:Y Price  Clearance
Front System one 9 9 Control ® eela Unladen

122 000000 122.000000 ... 1220000000 122000000 122.000000 122000000 22000000 122 000000 122 000000 122 000000 12200000402 122 000000

0114754 0122951 0650016 0009836 0934426 0626230 0801639 0409836 0663334 0844262 38481480406 258 103437
0320033 0320735 .. 0190070 0287598 02485568 0262475 0200030 0493831 0474310 0364102 36217030+08 268 030291
0 000000 0 000000 0000000 0 060000 0000000 Q000000 0000000 0000000 0 000000 0000000 4 2000006+05 100 000000
0 000000 0 000000 1 000000 1000000 1 000000 1000000 1000000 0000000 0000000 1000000 10240000+006 179 250000
0 000000 0 000000 1000000 1 000000 1 000000 1 000000 1000000 0000000 1 000000 1000000 1001500000 204 095238
0 000000 0000000 . ' 1 600000 1.000000 1 000000 1 000000 1 000000 1 000000 1 000000 1000000 6 3287500+00 204 095238
1.000000 1000000 .. 1000000 1000000 1.000000 1 000000 1 000000 1 00V000 1 000000 1000000 14850000407 2729 000000

Fig 3.4



Chapter 4 : Model

In this research work, for Car Price Prediction, we have created a Simple Feed Forward Neural Network. For

implementing this model, we first split the dataset into training and testing data by taking test_size=0.30 and
random_state=42, - |

Then we standardised the training and training dataset by using StandardScalar() method of sklearn library.

After this, we created a model having 4 layers of neural networks. First layer has 128 neurons along with relu
activation function, second layer has 64 neurons along with relu activation function, third layer has 32 neurons
along with relu activation function and last(fourth) layer has only one neuron which acts as an output neuron
for this regression problem. '

After this, we compiled the model by using various optimizers which are following :

1.

2.

Adam(Adaptive Moment Estimation) : It is a SGD(Stochastic Gradient Descent) algorithm which is
based on adaptive estimations of first and second order moments.

RMSprop(Root Mean Square Propagation) : It is an optimization technique based on gradient used for
training of Artificial neural networks proposed by Geofrey Hinton(Father of Back Propagation).
Adagrad(Adaptive Gradient) : It adapts the learning rate for every parameter according to historic
gradient information individually. Tt performs good for sparse data but it suffers from overly
aggressive learning rate decay.

Adadelta : It is an extention of Adagrad which deals with the problem of learning rate decay. It takes
the running average of the parameter updates for adapting the learning rates and remove the
requirement for specifying the initial learning rate.

Nadam(Nesterov-Accelerated Adaptive Moment Estimation) : It is an addition to Adam that includes
Nesterov-Accelerated Gradient(NAG) into an algorithm. This optimizer is more resistant to noisy
gradients as its convergence is improved with the help of NAG.

Here, we will take learning rate=0.01

Now, we trained the model with training and testing data by taking number of epochs=50 and batch size=16.

The plotting of this model is depicted by following figure :



The summary of this model is depicted by the following figure :

input_1 input: | [(None, 46)]
InputLayer | output: | [(None, 46)]
dense | input: | (None, 46)
Dense | output: | (None, 128)
dense_1 | input: | (None, 128)
Dense | output: | (None, 64)
dense_2 | input: | (None, 64)
Dense | output: | (None, 32)
densé_3 input: | (None, 32)
Dense | output: | (None, 1)
Fig 4.1




Model: "sequential™

Layer (type) Output Shape Param #
dense (Dense)  (Neme, 128)  eere

dense 1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 32) 2080
~dense_3 (Dense) (None, 1) 33

Total params: 16385 (64.00 KB)
Trainable params: 16385 (64.00 KB)
Non-trainable params: © (0.0 Byte)

Fig4.2



Chapter 5 : Results

Since car price prediction is a regression problem. So, we can use the parameters like mean absolute
crror(mean of the modulus of the difference of y-predicted and y-actual for testing datasct)[33], mean square
error(mean of the square of the difference of y-predicted and y-actual for testing dataset)[34], root mean square
error (square root of the mean of the square of the difference of y-predicted and y-actual for testing dataset)
and r2 score(also known as Coefficient of determination. It is equal to difference of the ratio of RSS(sum of
squares of residuals)and TSS(Total sum of squares) from 1) to understand the performance of this deep
learning model)[35].

In this model,

For Adam optimizer, A
Mean Absolute Error = 1078369.5119562922
Mean Square Error = 3550281808265.53

" R2 score = 0.7266976276138666

For RMSprop Optimizer,

Mean Absolute Error = 1278129.1495460304
Mean Square Error = 4748897593830.016
R2 score = 0.6344276176637882

For Adagrad Optimizer, v

Mean Absolute Error = 3785143.0123979724
Mean Square Error = 26992325621451.758
R2 score = -1.0778819899273864

For Adadelta Optimizer,

Mean Absolute Error = 3833729.148976664
Mean Square Error = 27687785487375.64
R2 score =-1.1314188192612802

For Nadam optimizer,

Mean Absolute Error = 1361081.8473131335
Mean Square Error = 4728849202328.92

R2 score = 0.6359709523216226

For this model, the scatter plot[36] between actual values and predicted values for various optimizers is sho
wn in following graphs :

a. For Adam optimizer,
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b. For RMSprop Optimizer,
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c. For Adagrad Optimizer,
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d. For Adadelta Optimizer,
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Now, the histogram[37] of th
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e. For Nadam Optimizer,
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Chapter 6 : Conclusion

[n this car price prediction model, after seeing performance of various optimizers, we can conclude that Adam

optimizer has given the best results, RMSprop and Nadam optimizers are also giving good results but Adagrad
and Adadelta optimizers are giving poor results.

The comparision between the performance of these optimizers is:
Adam > RMSprop > Nadam > Adagrad > Adadelta

Hence, we can use this model with Adam, RMSprop or Nadam optimizer for predicting the price of cars and
we can also change the number of layers of neurons, activation function, density(number of ncurons in a layer)
of a layer and learning rate to get better results.
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