

Designing of Heat Exchanger & Tube pitch,

Internship Report

Submitted for the partial fulfillment of the degree of

Bachelor of Technology

In

Chemical Engineering

Submitted By

Khushi Dandotiya

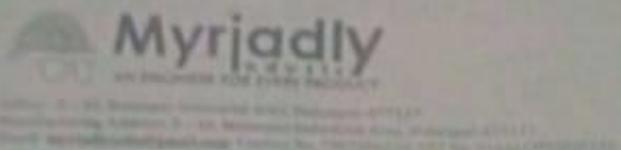
0901CM201021

UNDER THE SUPERVISION AND GUIDANCE OF

Anish P. Jacob

Coordinator and Assistant Professor

Department of Chemical Engineering



MADIAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA
मधिव इन्स्टीट्यूट ऑफ टेक्नोलॉजी, ग्वालियर (म.प.), भारत

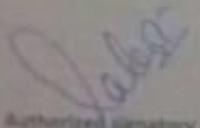
Deemed to be University
(Declared under Distress Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH **A++** GRADE

Jan-May 2024

INTERNSHIP CERTIFICATE

CERTIFICATE

Date: 20-05-2024


By authority of the company,

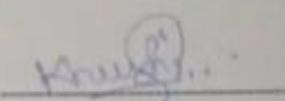
This is to certify that Mr. Khushi Dandekar, B.Tech. in Chemical Engineering (4th year) from Kothai Institute of Technology & Science, Govt. has undergone 4 months unpaid Internship in our organization from 25-01-2024 to 15-05-2024.

During his Internship, he completed the project titled "Designing & Casting of Heat Exchanger" with compassion and diligence.

We wish Mr. Khushi success in all his future endeavours as she progresses in his professional career.

For Myriadly Engineering & Business Solutions

Authorized signatory


Email: myriadlyinternships@gmail.com, Contact No: +91 98466 44466, Web: www.myriadly.com

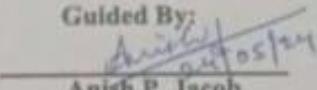
DECLARATION BY THE CANDIDATE

I hereby declare that the work entitled "Designing of heat exchanger & Tube pitch.

"is my work, conducted under the supervision of Prof. Anish P. Jacob, Coordinator and Assistant Professor, during the session Jan-May 2024. The report submitted by me is a record of bonafide work carried out by me.

I further declare that the work reported in this report has not been submitted and will not be submitted, either in part or in full, for the award of any other degree or diploma in this institute or any other institute or university.

Khushi Dandotiya

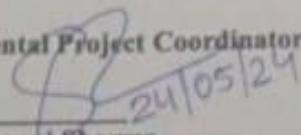

0901CM201021

Date: 24/05/24

Place: Gwalior

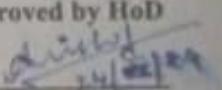
This is to certify that the above statement made by the candidates is correct to the best of my knowledge and belief.

Guided By:

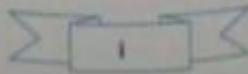


Anish P. Jacob

Coordinator and Assistant Professor


Department of Chemical Engineering

MTS, Gwalior

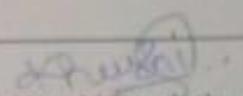

Departmental Project Coordinator

Prof. Shivangi Sharma
Assistant Professor
Department of Chemical Engineering
MTS, Gwalior

Approved by HoD

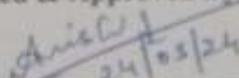
Prof. Anish P. Jacob
Coordinator and Assistant Professor
Department of Chemical Engineering
MTS, Gwalior

Chemical Engineering
MTS, Gwalior



Plagiarism Check Certificate

This is to certify that I/we, a student of B.Tech. in Chemical Engineering Department have checked my complete report entitled "**Designing of Heat Exchanger & Tube Pitch.**" for similarity/plagiarism using the "Turnitin" software available in the institute.


This is to certify that the similarity in my report is found to be 17% which is within the specified limit (20%).

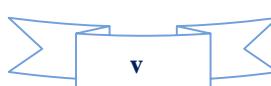
The full plagiarism report along with the summary is enclosed.

Khushi Dandotiya
0901CM201021

Checked & Approved By:

Anish P. Jacob
24/05/24

Anish P. Jacob
Turnitin cordinator
Department of Chemical Engineering
MITs, Gwalior



ABSTRACT

This internship report analyze how designing and manufacturing processes interact dynamically in today industrial environment. Setting out to explore the complex relationship that exists between innovation and productivity, this paper summarises my time interning at MYRIADLY ENGINEERING & BUSINESS SOLUTION PVT. LIMITED, a major participant in the Manufacturing and Designing of Pharmaceutical & Chemical equipment Market. During the internship, a lot of focus was on helping interns see how Important it is for design to influence manufacturing processes and vice versa. The study explains the complex processes involved in bridging the gap between creative design concepts and realistic manufacturing viability, from conception to implementation. This internship report highlights the beneficial relationship between design and manufacturing processes, highlighting their combined influence on promoting innovation and competitiveness in the modern industrial environment. It provides an in-depth perspective on the complicated relationships between creativity and execution that will shape the direction of product creation in the future through a combination of theoretical study and real-world applications.

Keywords : Designing , Manufacturing , Innovation, Execution, Competitiveness

ACKNOWLEDGEMENT

This semester internship has proven to be crucial to my career. I am very grateful to my institute, “**Madhav Institute of Technology & Science**” to permit me to continued my interdisciplinary internship as a curriculum requirement, agreed by the academic council of institute. I protract my appreciation to the Director of the institute, **Dr. R.K Pandit** and Dean Academics, **Dr. Manjaree Pandit** for the, Guidance and Co-operation are valuable for fulfilling and furnishing any kind of work. Similarly, I am dearly thankful to the Management for granting me this prestigious opportunity to learn from the Field Knowledge based on the theoretical aspects and also for guiding me during the ongoing training Period. I am sincerely grateful to my faculty mentors. I am thankful to the guidance of **Anish P. Jacob**, Assistant Professor, Department of Chemical Engineering, for the persisted support and close mentoring Throughout the internship. I appreciates all the faculty and staff of the department. And I am Grateful to **Mr. Rakesh Agarwal** as an industry mentor who helped me a lot to get interact with the Industry for guiding me throughout the internship.

Khushi Dandotiya

0901CM201021

CONTENT

Table of Contents

Declaration by the Candidate.....	i
Abstract.....	iii
Acknowledgement.....	iv
Content.....	v
Acronyms.....	vi
Nomenclature.....	vii
List of Figures	viii
List of Tables	ix
Chapter 1: Introduction.....	1
Chapter 2: Literature Survey.....	2
Chapter 3: Company Profile	3
Chapter 4:Problem Formulation.....	7
Chapter 5: Methodology	8
Chapter 6: Results & Discussion.....	9
chapter 7: Conclusion	10
Chapter 8:(8.1) Achieved Outcomes (8.2) Societal Relevance.....	11-12
Chapter 9: References.....	14
Turnitin Plagiarism Report	15
Appendix	16-29

ACRONYMS

- IC: Inter cooler
- CE: Combustion engines
- Pvt: Private
- Ltd: Limited
- GMP: Good manufacturing practice
- CAD: Computer aided design

NOMENCLATURE

LIST OF FIGURES

Fig. 1.1 Heat Exchanger Problem (1)	9
Fig. 1.2 Heat Exchanger Problem (2)	10
Fig 1.3 Heat Exchanger Problem (3)	11
Fig. 1.4 Heat Exchanger Problem (4)	13
Fig 1.5 Heat Exchanger Problem (5)	17
Fig 1.6 Heat Exchanger Problem (6)	17-18
Fig. 1.7 Heat Exchanger Problem (7)	18-19

LIST OF TABLES

CHAPTER 1: INTRODUCTION

A heat exchanger is an instrument which is the process of heat exchanges between the two fluids that are at the two different temperatures. . The topic shows about the specification which has impact the accomplishment of a heat exchanger and discuss the Comparative for the design or the section of the performance of an existing heat exchanger. In shell-and-tube heat exchangers, two fluids at different temperatures pass through distinct regions. One fluid circulates inside the tubes, while the other flows outside the tubes within the surrounding shell. Baffles are employed to support the tubes, direct the flow of fluid inside the tubes in a somewhat natural manner, and enhance the turbulence of the fluid within the shell. Numerous types of baffles exist for this purpose with choices regarding spacing, and geometry depending on the permissible pressure drop on the shell side, the need for tube support , and the potential for flow induced vibrations. Variations in exchangers are primarily due to differences in flow configurations and construction details. It comprises of series of tubes that contain fluid that must be either heated or cooled. A second fluid flows over the tubes that can be either separated if absorb the heat required. A set of tubes is called the tube bundle which are made of various types of tubes: plain, finned, etc. heat exchangers are commonly used for higher- pressure applications. It is because the shell and tube heat exchangers are rugged due to it's shape.

CHAPTER 2: LITERATURE SURVEY

Myriadly Engineering & Business Solutions Pvt. Ltd. is dedicated to providing engineering and business solution to the chemical and pharmaceutical industry. Their mission is to provide the pharmaceutical and chemical industry with technical solutions to the best of their knowledge. All their products are customized according to the customer & requirements. They use GMP practices to manufacture their products. The company unwavering commitment is to provide cutting-edge design solutions that specifically address the unique needs of the pharmaceutical and chemical industries, leveraging their expertise and knowledge. Myriadly Engineering and Solutions Pvt. with a strong emphasis on customization. Ltd. ensuring that all their products are carefully tailored to the specific requirements of each client, resulting in optimal results. One of the key pillars of the company's operation is their adherence to Good Manufacturing Practice (GMP). By strictly following these industry standards, Myriadly Engineering & Solutions Pvt. Ltd. maintains the highest levels of quality, safety, and reliability in the manufacturing of their products. The implementation of GMP practices is a testament to the company's dedication to providing excellence and upholding industry best practices. Their goal is to offer the industries the best possible services. Indian and international standards are followed in the manufacturing of our goods. Thanks to the gratitude and goodwill that clients from all across India have shown for the company, it has seen the expected growth over the previous three years. This company is working really hard to meet and exceed the needs and desires of its customers. At different phases, the goods produced by Myriadly Engineering & Business Solution Pvt. Ltd. go through a thorough testing and quality assurance technique.

Raw material Inspection: A thorough inspection of the new materials is conducted according to the specified requirements and predetermined schedules.

Inspection during production: Inspections are conducted at various stages of the production process to guarantee the caliber of the fabrication, galvanizing, machining, and moldings. This guarantees high-quality output and reduces rejection rates.

CHAPTER 3: COMPANY PROFILE

Vision: Myriadly Engineering & Business Solution Pvt. Ltd. aspires to become a global leader in providing comprehensive, easily accessible industrial solutions with an unmatched level of excellence. Having become a one-stop shop for all things industrial, their ultimate objective is to become a name that people associate with excellence in terms of dependability, convenience, and quality. They want to be the first company that companies throughout the world turn to when they need dependable, top-notch industrial solutions.

Mission: Myriadly Engineering & Business Solution Pvt. Ltd. mission is to serve as a liaison between chemical and pharmaceutical firms and the service sectors that support them. By offering all-inclusive solutions and services, they aim to promote smooth collaboration and improve efficiency in various industries. Myriadly Engineering & Business Solution Pvt. Ltd. wants to support the expansion and improvement of the industry as a whole while offering worthwhile chances for aspirant professionals. The company also hopes to encourage the development of young talent by providing opportunities for them to work as freelancers.

Pre-dispatch inspection: After items are assembled or produced, a thorough examination is carried out before shipping to ensure that all attachments fit correctly. This stage guarantees that the finished product satisfies the relevant requirements. **Drawings & Test Certificates:** After items are assembled or produced, a thorough examination is carried out before shipping to ensure that all attachments fit correctly. This stage guarantees that the finished product satisfies the relevant requirements.

The company's tagline is "affordable solutions without sacrificing quality." Actually, every one of our products which include heat exchangers with hastelloy coating, glove boxes, lab scale reactors, colloid coating, and lab scale reactors meets international standards and is put through a rigorous quality inspection process before being delivered to the final consumer. The production department oversees the actual manufacturing process of condensers and heat exchangers. Skilled technicians and engineers work here to fabricate components, assemble units, and perform quality checks. They follow engineering drawings and specifications to ensure that each unit meets quality standards and customer requirements.

CHAPTER 4 :PROBLEM FORMULATION

In a Kerosene – crude oil exchanger. 43,800 lb/hr of 42 degree API kerosene exits the bottom of a distillation column at 390 degree fahrenheit and is cooled to 200 degree fahrenheit by 149,000lb/hr of 34 degree API Mid -continent crude oil ,comes which is stored at 100 degree fahrenheit and heated to 170 degree fahrenheit. A 10 psi pressure drop is acceptable for both streams, and the Available exchanger for this process has a 21.25 in Internal diameter, containing 158 tubes with a 1- inch outer diameter, 13 BWG each 16 feet long , arranged in a 1.25 inch square pitch. The bundle has arranged in four passes, with baffles spaced 5 inch apart. , what is the Clean overall heat transfer coefficient?

CHAPTER 5 :PROPOSED METHODOLOGY

A heat exchanger should be created by the LMTD where inlet and outlet conditions are declared. Where the problem is to resolve the inlet and outlet temperatures of an appropriate heat exchanger, the analysis is accomplished more easily while using a method depending on efficiency of heat exchanger and number of transfer units (NTU). In designing of shell and tube heat exchangers, in examining the question both observationally and theoretically, distinguished the potential profitableness of specific representation of LMTD Correction factors in elaborating computerized packages for heat exchangers designs. Tinker et al has recommended a schematic flow pattern, that divides the shell-side flow into a number of severally streams. Tinkers model has formed the foundation for the “stream analysis method”, which uses a highly redundant approach and is particularly suitable for computer calculations rather than hand calculations. This method incorporates correction factors for heat transfer and pressure drop correlations. Heat transfer is achieved through three main mechanisms: conduction, convection and radiation. Heat exchangers operate based on conduction and convection. While radiation does occur in many processes, it's contribution in most heat exchangers is minimal compared to the other two methods. Conduction takes place as heat from the hot fluid passes through the inner pipe wall. To improve heat transfer, the inner pipe wall should be thin and made of a highly conductive material.

Chapter 6: Results & Discussion

The performance analysis of the heat exchanger reveals significant findings. The heat exchanger, designed with a series of tubes through which the primary fluid flows, exhibits efficient heat transfer capabilities when subjected to varying operating conditions. The second fluid, flowing outside these tubes within the shell, successfully absorbs or dissipates heat, achieving the desired temperature changes. The inclusion of baffles has been particularly effective in enhancing the turbulence of the shell-side fluid, thereby improving heat transfer rates. Different baffle configurations and spacings were tested, showing that optimal spacing is crucial for balancing pressure drops and maximizing heat transfer efficiency.

In high-pressure applications, the robust design of the shell-and-tube heat exchanger proved advantageous. The use of various tube types, such as plain and finned tubes, demonstrated that tube geometry significantly impacts thermal performance. The rugged construction of these exchangers allows them to withstand substantial pressure variations, making them ideal for industrial applications. Computer simulations based on Tinker's model and the Stream Analysis Method highlighted the accuracy of heat transfer and pressure drop predictions. The computational approach was found to be more effective than manual calculations, particularly in handling complex configurations and multiple variables. Overall, the study confirms that the shell-and-tube heat exchanger is a versatile and efficient solution for thermal management in various industrial processes. The results underscore the importance of proper design, including

Chapter 7: Conclusion

The following conclusions are achieved from the transfer analysis of shell and tube heat exchanger for three several fluid combinations (water-steam, CO₂-steam and SO₂-steam) using qern's method. Validations for on tube side of water is in comparison with a digression . From the data achieved and arrived this is found as in In the study, steam was used on the shell side while CO₂ and SO₂ were used on the tube side of the heat exchanger. It was observed that the Nusselt numbers increased significantly for the SO₂-steam combination compared to the CO₂-steam combination, although the friction factor remained nearly the same for both combinations. Shell-and-tube heat exchangers are highly versatile and efficient, making them suitable for a wide range of industrial applications. Their unique design allows for high heat transfer efficiency, making them an ideal choice for critical heat exchange processes. Industrial manufacturers provide various types of shell-and-tube heat exchangers with customization options to meet specific application needs. Additionally, their ease of maintenance and cleaning extends their lifespan and improves efficiency. In summary, the design of shell-and-tube heat exchangers is flexible and efficient, offering numerous advantages that make them a valuable investment for companies aiming to enhance their heat transfer processes.

CHAPTER 8.1: ACHIEVED OUTCOMES

- Design the compatible Heat Exchanger and Tube Pitch
- Solved any Heat Exchanger Problems .
- Worked efficiently with Excel includes plotting the graph.

CHAPTER 8.2: SOCIETAL RELEVANCE

Heat exchangers are important in different industries and applications where efficiency of transferring of heat is essential. Heat transfer has major applications to the functioning of numerous devices and systems. The topic represents the specification that impacts the performance of a heat exchanger and discusses the Comparative for the design of a heat exchanger or the projection of the performance which is existing heat exchanger. Heat exchangers required everyday maintaining to function at higher efficiency and normally requires a rigorous overall schedule is essential, with much effort focused on The impact of fouling, where solids like foreign particles or precipitates build up on heat exchanger surfaces, necessitates various maintenance actions. These can range from simple preventive measures like flushing to more extensive repairs, such as removing the tube bundle from the heat exchanger shell for cleaning. Designing heat exchanger configurations should account for this downtime, for instance, by installing parallel trains that enable one heat exchanger to undergo cleaning while the plant continues operating. Given that many heat exchangers handle hazardous fluids at high pressures and temperatures, rigorous process safety measures in the design are essential to prevent personal risks and system failures.

CHAPTER 9: REFERENCES

1. Kern, Process Heat Transfer, Mc Graw – Hill
2. Roetzel and Nicole, Mean Temperature Difference for Heat Exchanger Design – A General Approximate Explicit Equation, Journal of Heat Transfer, Vol. 97, pp 5-8, 1975.
3. Tinker, Shell Side Characteristic of Shell Tube Heat Exchangers, Parts I, II &III, in: Proceedings of General Discussion on Heat transfer, Institute of Mechanical Engineers and American Society of Mechanical Engineers, Vol 10 pp. 820-826, 1951.
4. Saunders, Heat Exchangers, John Wiley & Sons
5. Wills and Johnston, A New and Accurate Hand Calculation Method for Shell-Side Pressure Drop and Flow Distribution, in: 22nd National Heat Transfer Conference, and 36 pp. 256-262, 1990.
6. Chen su and Do Hyung Choi Analysis of Heat Transfer performance of Shell and Tube Heat Exchanger, International Journal of Heat and Mass transfer, Vol. 55, pp. 1496-1504,1993.
7. Liljana Markovska and Vera Mesko Optimum Design of Shell and Tube Heat Bulletin of the Chemists and Technologies of Macedonia, Vol. 15, No. 1, pp. 39 - 44 (1996).
8. G.V.Srinivasa Rao, Dr. C. J. Rao, Dr. N. haribabu Heat Transfer Analysis on Shell and Tube Heat Exchangers, International Journal of Research in Aeronautical and Mechanical Engineering, vol.2 issue.1, January 2014. Pgs: 11-26

TURNITIN PLAGIARISM REPORT

Similarity Report

PAPER NAME

end sem final report.docx

WORD COUNT

2689 Words

CHARACTER COUNT

15584 Characters

PAGE COUNT

42 Pages

FILE SIZE

1.9MB

SUBMISSION DATE

May 23, 2024 11:42 PM GMT+5:30

REPORT DATE

May 23, 2024 11:43 PM GMT+5:30

● 17% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 14% Internet database
- Crossref database
- 13% Submitted Works database
- 7% Publications database
- Crossref Posted Content database

● Excluded from Similarity Report

- Bibliographic material
- Cited material
- Quoted material
- Small Matches (Less than 8 words)

Summary

● 17% Overall Similarity

Top sources found in the following databases:

- 14% Internet database
- Crossref database
- 13% Submitted Works database
- 7% Publications database
- Crossref Posted Content database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	ijrane.com	2%
	Internet	
2	en.wikipedia.org	2%
	Internet	
3	vdoc.pub	2%
	Internet	
4	Dr. B R Ambedkar National Institute of Technology, Jalandhar on 2022-01-24	2%
	Submitted works	
5	erpublication.org	2%
	Internet	
6	dspace.yildiz.edu.tr	2%
	Internet	
7	University of Salford on 2020-01-24	<1%
	Submitted works	
8	9561 on 2015-02-05	<1%
	Submitted works	

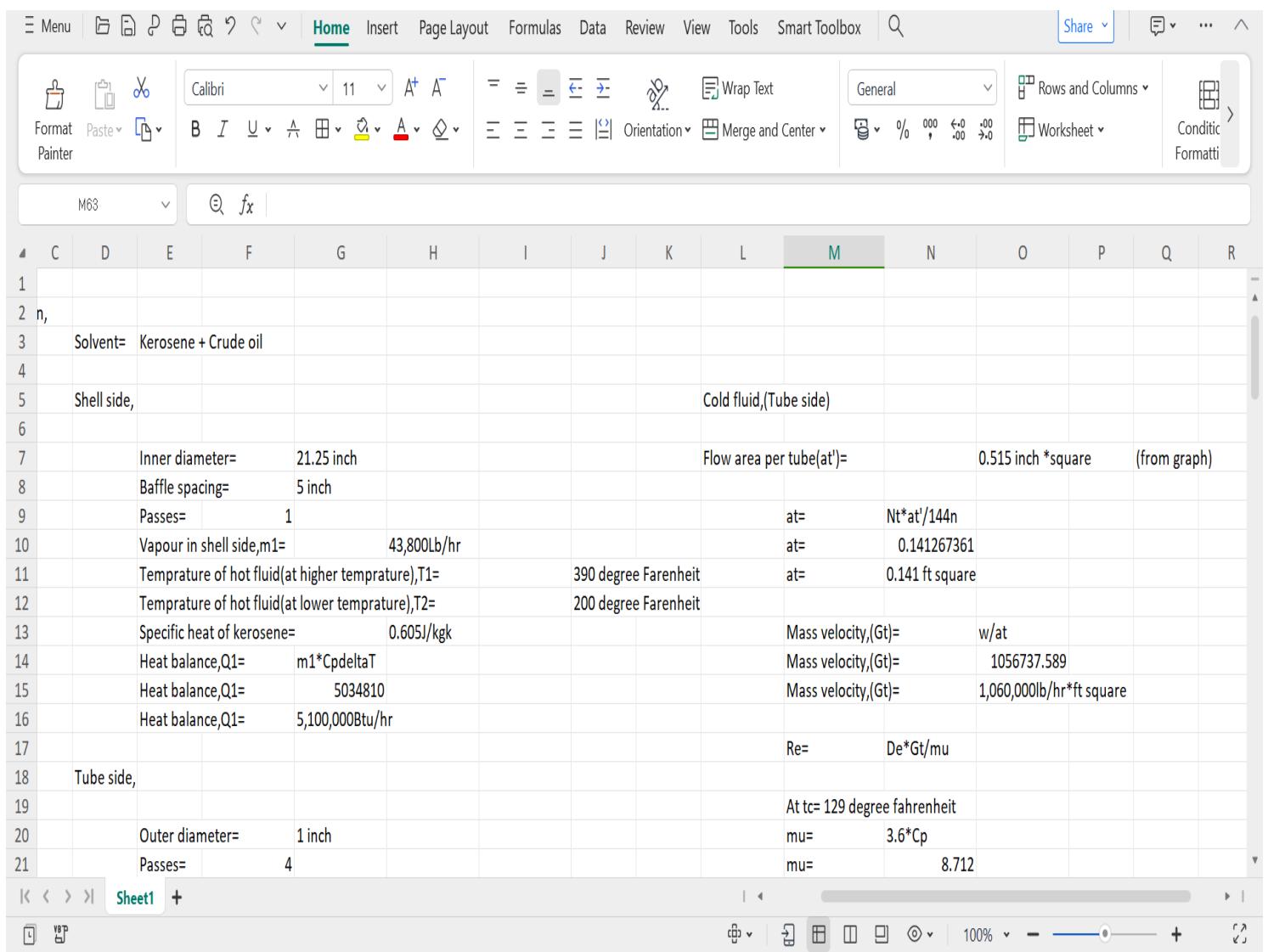
[Sources overview](#)

9 Heriot-Watt University on 2015-05-21 <1%
Submitted works

10 University of Derby on 2022-08-12 <1%
Submitted works

11 Dublin City University on 2012-07-26 <1%
Submitted works

12 BITS, Pilani-Dubai on 2009-01-14 <1%
Submitted works

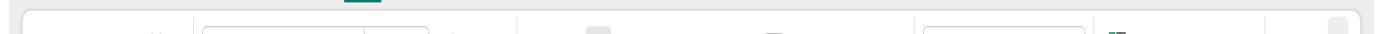

13 etda.libraries.psu.edu <1%
Internet

14 Karuppoor, Srinand Sreedharan. "Tools for innovation and conceptual ... <1%
Publication

15 Madhav Institute of Technology & Science on 2021-03-05 <1%
Submitted works

16 The University of Manchester on 2015-04-17 <1%
Submitted works

APPENDIX


The following table summarizes the data and calculations from the Excel spreadsheet:

Shell side,		Cold fluid,(Tube side)	
Inner diameter=	21.25 inch	Flow area per tube(at')=	0.515 inch *square (from graph)
Baffle spacing=	5 inch	at=	$Nt*at'/144n$
Passes=	1	at=	0.141267361
Vapour in shell side,m1=	43,800Lb/hr	at=	0.141 ft square
Temprature of hot fluid(at higher temprature),T1=	390 degree Farenheit	Mass velocity,(Gt)=	w/at
Temprature of hot fluid(at lower temprature),T2=	200 degree Farenheit	Mass velocity,(Gt)=	1056737.589
Specific heat of kerosene=	0.605J/kgk	Mass velocity,(Gt)=	1,060,000lb/hr*ft square
Heat balance,Q1=	$m1*Cp\Delta T$	Re=	$De*Gt/\mu$
Heat balance,Q1=	5034810	At tc= 129 degree fahrenheit	
Heat balance,Q1=	5,100,000Btu/hr	μ =	3.6*Cp
Tube side,		μ =	8.712
Outer diameter=	1 inch		
Passes=	4		

Fig.1.1: Heat Exchanger Problem (1)

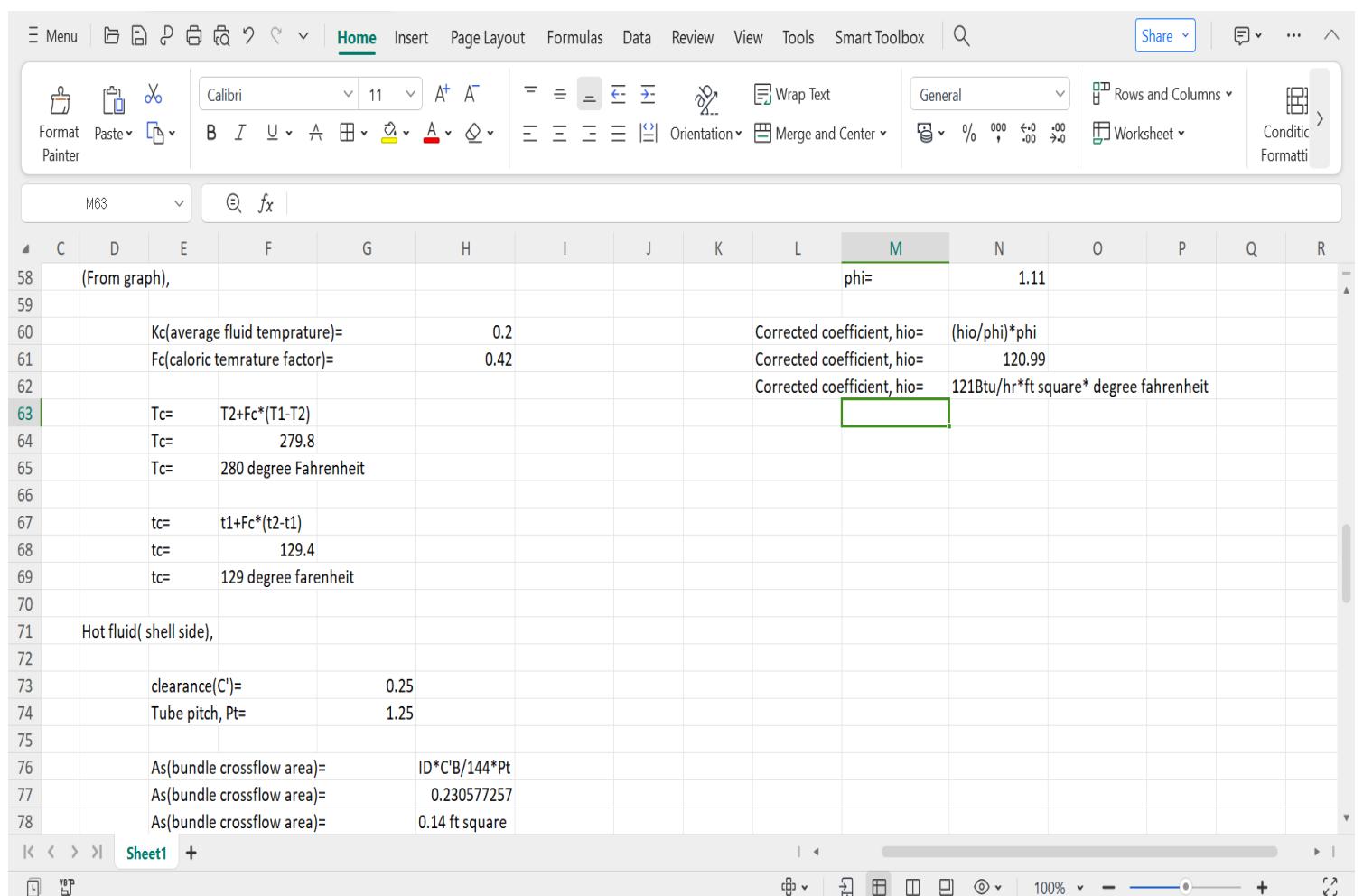

Heat Exchanger Problem (2)											
16		Heat balance,Q1=		5,100,000Btu/hr							
17											
18	Tube side,										
19											
20	Outer diameter=	1 inch									
21	Passes=	4									
22	Vapour in tube side,m2=	149,000lb/hr									
23	Temprature in cold side(at higher temperature),t1=		170 degree Fahrenheit								
24	Temprature of cold side(at lower temperature),t2=		100 degree Fahrenheit								
25											
26	Heat balance,Q2=	$m_2 \cdot C_p \cdot \Delta t$									
27	Heat balance,Q2=	5110700									
28	Heat balance,Q2=	5,100,000 Btu/hr									
29											
30	For counter current,										
31											
32	LMTD=	$\frac{(T_1 - t_2) - (T_2 - t_1)}{\ln((T_1 - t_2) / (T_2 - t_1))}$									
33	(T1-t2)=	220									
34	(T2-t1)=	100									
35	$\ln((T_1 - t_2) / (T_2 - t_1))$	0.78845736									
36											

Fig.1.2: Heat Exchanger Problem (2)

Heat Exchanger Problem (3)													
M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
LMTD=	152.195998												
LMTD=	152.5 degree Fahrenheit												
(From Graph)													
R=	(T1-T2)/(t1-t2)												
R=	2.714285714												
S=	(t1-t2)/(T1-t2)												
S=	0.24137931												
Correction Factor(Ft)=	0.905												
delta t=	Ft*LMTD												
delta t=	138.0125												
delta t=	138 degree Fahrenheit												
Tc and tc(cold terminal difference)													
delta(tc)=	(T2-t1)												
delta(tc)=	100												
delta(th)=	(T1-t2)												
delta(th)=	220												
(delta tc/delta th)=	0.454545455												

Fig.1.3: Heat Exchanger Problem (3)

Fig 1.4: Heat Exchanger Problem (4)

Heat Exchanger Problem (4)																
Excel Spreadsheet																
Row	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
58	(From graph),										phi=	1.11				
59																
60	Kc(average fluid temprature)=					0.2					Corrected coefficient, hio=	(hio/phi)*phi				
61	Fc(caloric temrature factor)=					0.42					Corrected coefficient, hio=	120.99				
62											Corrected coefficient, hio=	121Btu/hr*ft square* degree fahrenheit				
63	Tc=	T2+Fc*(T1-T2)														
64	Tc=	279.8														
65	Tc=	280 degree Fahrenheit														
66																
67	tc=	t1+Fc*(t2-t1)														
68	tc=	129.4														
69	tc=	129 degree farenheit														
70																
71	Hot fluid(shell side),															
72																
73	clearance(C')=					0.25										
74	Tube pitch, Pt=					1.25										
75																
76	As(bundle crossflow area)=					ID*C'B/144*Pt										
77	As(bundle crossflow area)=					0.230577257										
78	As(bundle crossflow area)=					0.14 ft square										

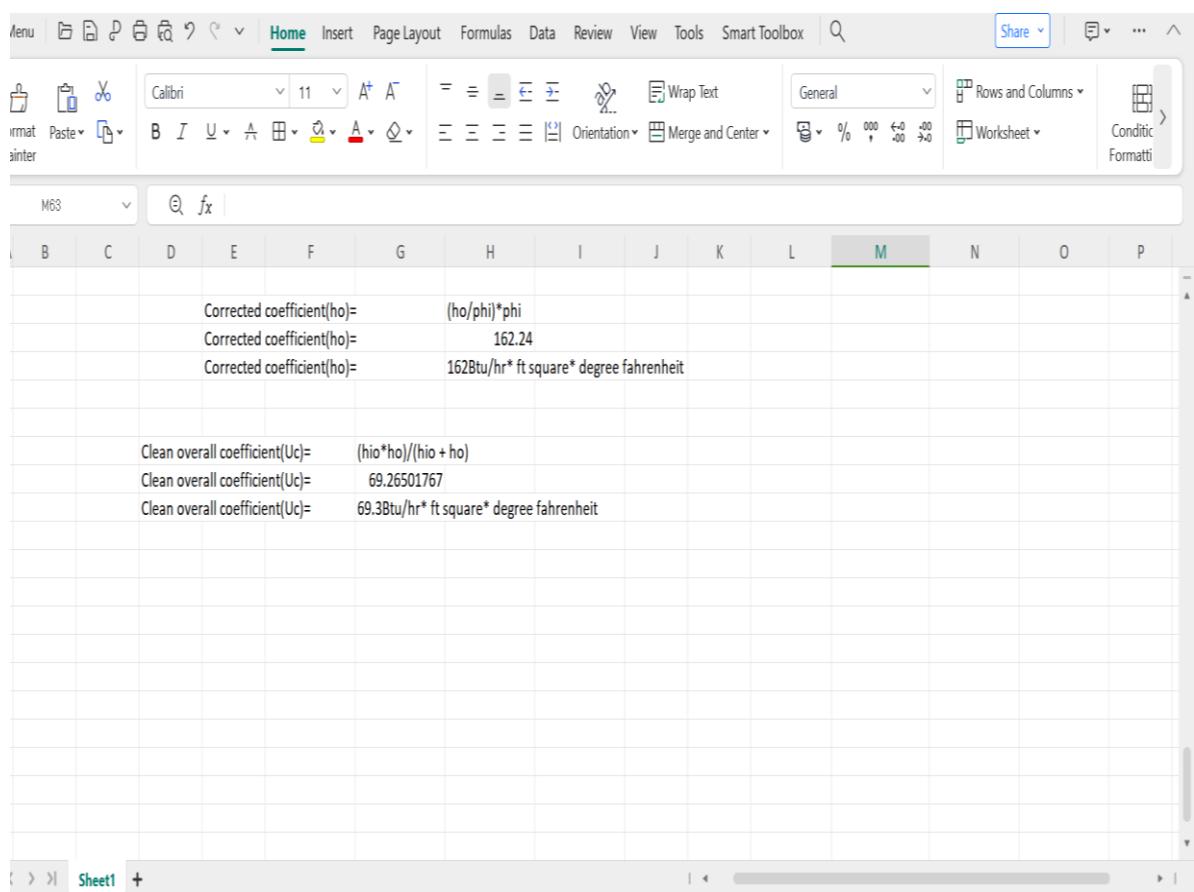
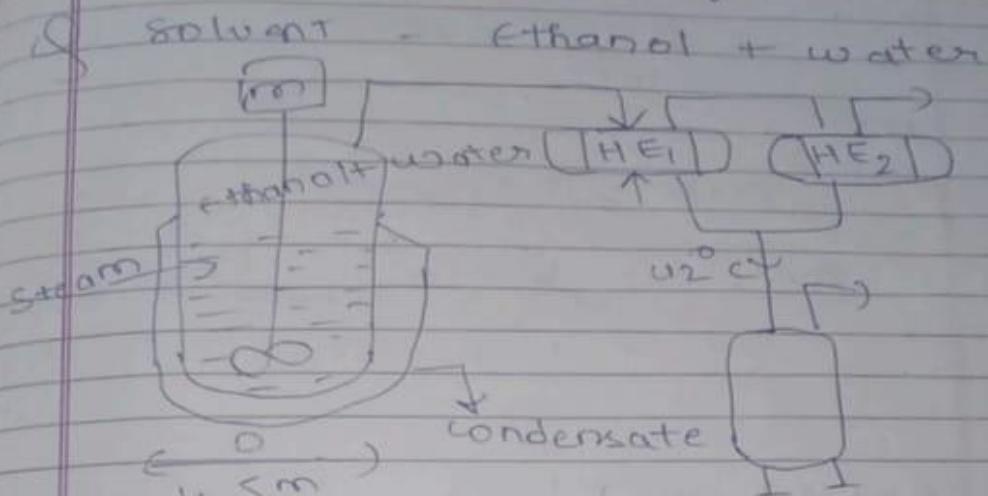

Home																
Format Painter		Font			Font Style			Font Size			Font Color			Font Effects		
Rows and Columns		General		Merge and Center		Orientation		Number Format		Worksheet		Conditional Formatting				
M63	v	θ	fx													
79																
80	Mass velocity(Gs)=	w/As														
81		296949.1525														
82	Mass velocity(Gs)=	297,000lb/hr*ft square														
83																
84	At Tc=	280 degree Farenheit														
85	viscosity(v)=	1.12*Cp (from graph)														
86	Cp=	2.42lb/ft*hr														
87	μ=	0.40*Cp														
88	μ=	0.968														
89	μ=	0.968lb/ft*hr														
90																
91	D=	0.0825 (from table)														
92	D=	0.0825 ft														
93																
94	Re=	De*Ge/μ														
95	Re=	25260.30928														
96	Re=	25,300														
97																
98	Jh=	93 (from Graph)														
99																

Fig.1.5: Heat Exchanger Problem (5)

Home											
Format Painter		Font: Calibri, Size: 11		Font Style: A ⁺ A ⁻		Text Alignment: = = = =		Orientation: Wrap Text		Number Format: General	
Paste:		Font: <i>B</i> <u>I</u> <u>U</u> <u>A</u>		Font: <u>A</u>		Text Alignment:		Orientation:		Number Format:	
M63		fx									
100				c=	0.59 Btu/lb*degree fahrenheit						
101				k=	0.0765Btu/hr*ft square* degree fahrenheit per ft						
102				(cmu/K) ^{1/3} =	1.942708152						
103					1.95						
104				ho(heat transfer coefficient outside bundle)=		Jh*K/De*(cmu/k) ^{1/3} *phi					
105				ho(heat transfer coefficient outside bundle)=		168.1609091					
106				ho/phi=		169					
107											
108				Tube wall tempature(tw)=		tc+(ho/phi/(hio/phi +ho/phi))(Tc-tc)					
109				Tube wall tempature(tw)=		220.794964					
110				Tube wall tempature(tw)=		221 degree fahrenheit					
111											
112				At tw,							
113				viscosity at the tube wall temp.(mu)w=		mu*Cp					
114				viscosity at the tube wall temp.(mu)w=		1.3552					
115				viscosity at the tube wall temp.(mu)w=		1.36lb/ft*hr					
116											
117				(it is used when Re>2100)[from graph]							
118				phi=		(mu/(mu)w) ^{0.14}					
119				phi=		0.953789629					
120				phi=		0.96					

Fig 1.6: Heat Exchanger Problem (6)


Fig 1.7 Heat Exchanger Problem (7)

The screenshot shows a Microsoft Excel spreadsheet titled "Sheet1". The table below summarizes the data and calculations present in the spreadsheet.

		Heat Exchanger Problem (7)											
		Data											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											
		Properties											
		Water											
		Air											
		Flow											
		Upflow											

Heat Exchanger

VAPOR - 300 L/hr cooling water
 Inlet - 32°C
 outlet - 35°C

SOLVENT = Ethanol + water

$$D = 1.5 \text{ m}$$

$$\text{vapour} = 300 \text{ L/hr}$$

28 Temp

$$\text{Inlet} = 32^\circ\text{C} \quad \text{outlet} = 35^\circ\text{C} \quad \text{1 hr} = \text{kg/m}^3$$

$$Q = m\lambda$$

$$= \frac{300}{3600} \times 10^{-3} \times 8.54$$

$$\times 10^5 \times 790$$

$$\begin{aligned}
 &= \frac{3.14}{4.71} (3.515 - 1.766) \\
 &= \frac{3.14 \times 1.749}{4.71} \\
 &= \frac{5.4918}{4.71} \\
 &= 1.1659 \text{ m}^2
 \end{aligned}$$

$$R_e = \frac{Dc \rho s}{\mu} = \frac{1.1659 \times 244.52}{1.12 \times 10^{-3}}$$

$$= \frac{285.085}{1.12 \times 10^{-3}}$$

$$= 254.54 \times 10^3$$

$$\begin{aligned}
 K \left(\frac{c \mu}{K} \right)^{1/3} &= 0.16 \left(\frac{3.71 \times 0.00112}{0.16} \right)^{1/3} \\
 &= 0.16 \left(\frac{3.0464 \times 10^{-3}}{0.16} \right)^{1/3} \\
 &= 0.16 \left(\frac{0.0030464}{0.16} \right)^{1/3}
 \end{aligned}$$

$$u = 0.73 \times 10^{-3} \text{ m/s}$$

d_{eq} =
Equivalent tube

$$u = 0.59$$

$$d_{eq} = \frac{\pi d}{6.4}$$
$$= 6.52$$

$$Re_t = \frac{0.6u}{d}$$
$$= \frac{6.52 \times 0.0001995}{0.59}$$
$$= 0.001313$$

$$h_f = 3.50 \left(\frac{p_f \mu d_p}{d} \right)^{0.7} e^{-4.6 d_p / d_t} \times \lambda_f$$

$$d_t = \text{tube diameter} = 6.52$$

$$\lambda_f = \text{fluid thermal conductivity}$$
$$= 614.5 \text{ mW/mK}$$

$n = \text{No. of passes}$
 $= 2$ (shell side & tube
side)

$$a_t = 64 \times 1879.58$$
$$144 \times 2$$

$$= \underline{120293.12}$$
$$288$$

$$= 417.68 \text{ m}^2$$

$$G_t = w/a_t$$

$$= \frac{300}{3600 \times 417.68}$$

$$= \frac{300}{1503648}$$

$$= 0.0001995$$

$$t_c = 33^\circ\text{C}$$

$$\left(\frac{0.00117}{0.0030464} \right)^{0.14}$$

$$= (0.367)^{0.14}$$

$$= 0.869$$

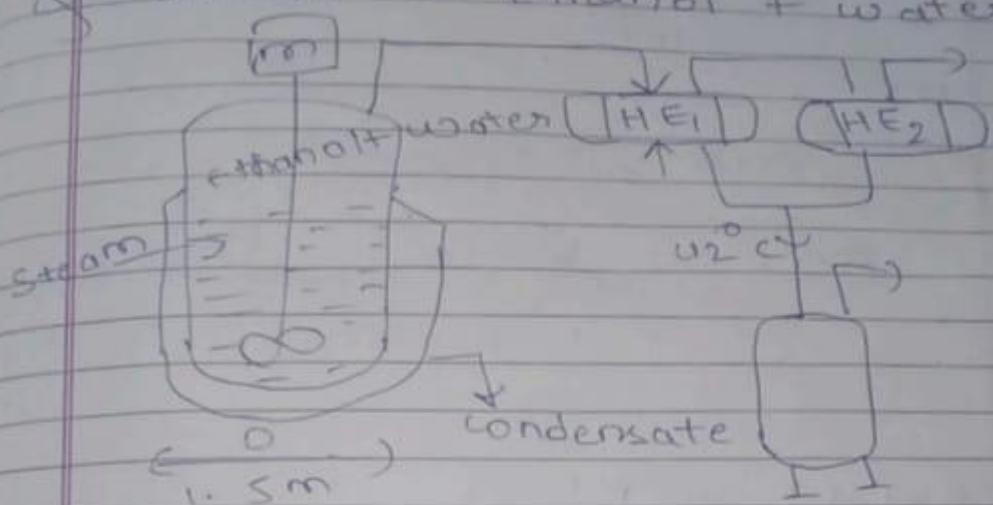
$$\therefore \frac{h_0}{\phi} = 0.0841$$

$$\frac{h_0}{0.869} = 0.0841$$

$$h_0 = 0.0841 \times 0.869$$

$$h_0 = 0.0731 \text{ W/m}^2 \text{K}$$

$$a_t' = \frac{\text{No. of tubes}}{95} = 64$$


$$= \frac{64}{0.03405}$$

$$= 1879.58$$

$$q_t = N_t \cdot a_t' \mid 1440$$

Heat Exchanger

SOLVENT - Ethanol + water

VAPOR -
 300 L/hr cooling water
 Inlet - 82°C
 outlet - 35°C

SOLVENT = Ethanol
 + water

$$D = 1.5 \text{ m}$$

$$\text{vapour} = 300 \text{ L/hr}$$

28 Temp

$$\text{Inlet} = 82^\circ\text{C}$$

$$\text{outlet} = 35^\circ\text{C}$$

1 hr

$$= \text{kg/m}^3$$

$$Q = m \lambda$$

$$= \frac{300}{3600} \times 10^{-3} \times 8.54$$

$$\times 10^5 \times 790$$

$$u = 0.73 \times 10^{-3} \text{ L}$$

$Q =$
Equivalent
tube

$$u = 0.89$$

$$D_{eq} = \frac{\pi d}{64}$$

$$= 6.52$$

$$R_{ct} = \frac{0.64t}{4}$$

$$= \frac{6.52 \times 0.0001995}{0.99}$$

$$= 0.001313$$

$$h_i = 3.50 \left(\frac{p_f \mu d_p}{d_t} \right)^{0.7} e^{-4.6 \alpha d_t} + \lambda_f$$

$$d_t = \text{Tube diameter} = 6.52$$

$$\lambda_f = \text{fluid thermal conductivity}$$

$$\approx 614.5 \text{ mW/mK}$$

$$\begin{aligned}
 & \left(\frac{0.00117}{0.0020464} \right)^{0.14} \\
 & = (0.267)^{0.14} \\
 & = 0.869
 \end{aligned}$$

$$\therefore \frac{h_0}{\phi} = 0.0841$$

$$\frac{h_0}{0.869} = 0.0841$$

$$h_0 = 0.0841 \times 0.869$$

$$h_0 = 0.0731 \text{ W/m}^2 \text{K}$$

$$a_t' = \frac{\text{No. of tubes}}{95} = 64$$

$$= \frac{64}{0.03405}$$

$$= 1829.58$$

$$q_t = N_t \cdot a_t' \mid 1440$$

$$u = 0.73 \times 10^{-3} \text{ L}$$

$Q =$
Saturated
tube

$$u = 0.89$$

$$D_{\text{ext}} = \frac{\pi d}{64}$$

$$= 6.52$$

$$R_{\text{ext}} = \frac{0.614}{6.52 \times 0.0001995}$$

$$= 0.001313$$

$$h_i = 3.50 \left(\frac{p_f \mu d_p}{d_t} \right)^{0.7} e^{-4.6 \rho \beta d_t} + \lambda_f$$

$$d_t = \text{Tube diameter} = 6.52$$

$$\lambda_f = \text{fluid thermal conductivity}$$

$$\approx 614.5 \text{ mW/mK}$$

$$u = 0.73 \times 10^{-3} \text{ L}$$

R_e =
Reynolds
tubc

$$u = 0.99$$

$$D_{eq} = \frac{\pi d}{64}$$
$$= 6.52$$

$$Re_t = \frac{0.99}{4}$$
$$= \frac{6.52 \times 0.0001995}{0.99}$$
$$= 0.001313$$

$$h_i = 3.50 \left(\frac{p_f \mu d_p}{d_t} \right)^{0.7} e^{-4.6 \alpha dt} + \lambda_f$$

$$d_t = \text{tube diameter} = 6.52$$

$$\lambda_f = \text{fluid thermal conductivity}$$
$$\approx 614.5 \text{ mW/mK}$$

FPR

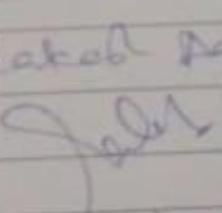
SEMBAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
 (A Govt. Aided UGC Autonomous Institute Affiliated to RGPV Bhopal)
 NAAC Accredited with A++ Grade

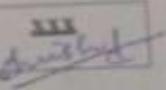
WEEKLY PROGRESS REPORT (FPR) FROM INDUSTRY MENTOR

Name of student	xxxxxxxxxxxxxx Khushi Dandotiya	Department	xxxx CM	15/01/24 to 31/01/24	
Industry Organization	xxxxxxxxxxxxxx	Date/Duration	DD/MM/YR - DD/MM/YR		
Criterion	Poor	Average	Good	Very Good	Excellent
Punctuality/Timely completion of assigned work				✓	
Learning capacity/Knowledge up gradation				✓	
Performance/Quality of work				✓	
Behaviour/Discipline/Team work				✓	
Sincerity/Hard work			✓		
Comment on nature of work done/Area/Topic					
<u>OVERALL GRADE (ABY one)</u>	<u>POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT</u>				
<u>Name of Industry Mentor</u>	<u>Rakesh Agarwal</u>				
<u>Signature of Industry Mentor</u>	<u>[Signature]</u>				

Receiving Date	xxxx 1/02/24	Name of Faculty Mentor	Prof. xxxAnish P. Jacobs	Sign	xxxx Anish
----------------	-----------------	------------------------	--------------------------	------	---------------

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
 (A Govt. Aided UGC Autonomous Institute Affiliated to RGPV Bhopal)
 NAAC Accredited with A++ Grade

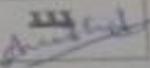

FORTNIGHTLY PROGRESS REPORT (FPR) FROM INDUSTRY MENTOR


Name of student	XXXXXX XXXXXXXX Kishori Dandetiya		Department C.M.	XXXX	
Industry/Organization	XXXXXXXXXXXXXXXX		Date/Duration	DD/MM/YR - DD/MM/YR 15/02/24 - 15/02/24	
Criterion	Poor	Average	Good	Very Good	Excellent
Punctuality/Timely completion of assigned work				✓	
Learning capacity/Knowledge up gradation				✓	
Performance/Quality of work				✓	
Behaviour/Discipline/Team work				✓	
Sincerity/Hard work				✓	
Comment on nature of work done/Area/Topic					
<u>OVERALL GRADE (Any one)</u>	<u>POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT</u>				
<u>Name of Industry Mentor</u>	<i>Rakesh Agarwal</i>				
<u>Signature of Industry Mentor</u>	<i>Jubil</i>				

Receiving Date	XXXX 16/03/24	Name of Faculty Mentor	Prof. <i>Ranish P. Jacob</i>	Sign	<i>✓</i>
----------------	------------------	------------------------	------------------------------	------	----------

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
 (A Govt. Aided UGC Autonomous Institute Affiliated to RGPV Bhopal)
 NAAC Accredited with A++ Grade

Bi-Monthly Progress Report (FPR) from Industry Mentor


Name of student	Khushali Dandotiya		Department C M	xxxx	
Industry/Organization	xxxxxxxxxxxx		Date/Duration	DD/MM/YR - DD/MM/YR	
Criterion	Poor	Average	Good	Very Good	Excellent
Punctuality/Timely completion of assigned work			✓		
Learning capacity/Knowledge up gradation			✓		
Performance/Quality of work			✓		
Behaviour/Discipline/Team work			—		
Sincerity/Hard work			✓		
Comment on nature of work done/Area/Topic					
OVERALL GRADE (Any one)	POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT				
Name of Industry Mentor	Rakesh Agarwal				
Signature of Industry Mentor					

Receiving Date	xxxx	Name of Faculty Mentor	Prof. ^{Dr.} P. J. Jacob	Sign	
	3/03/24				

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
 (A Govt. Aided UGC Autonomous Institute Affiliated to RGPV Bhopal)
 NAAC Accredited with A++ Grade

BIWEEKLY PROGRESS REPORT (FPR) FROM INDUSTRY MENTOR

Name of student	Kushal Dandchiya		Department CM	1 03 24 - 15 03 24
Industry Organization	XXXXXXXXXXXXXX		Date/Duration	DD/MM/YR - DD/MM/YR
Criterion	Poor	Average	Good	Very Good
Punctuality/Timely completion of assigned work			✓	
Learning capacity/Knowledge up gradation			✓	
Performance/Quality of work			✓	
Behaviour/Discipline/Team work			✓	
Sincerity/Hard work			✓	
Comment on nature of work done/Area/Topic				
OVERALL GRADE (Any one)	POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT			
Name of Industry Mentor	Rakesh Agarwal			
Signature of Industry Mentor				

Receiving Date	17 03 24	Name of Faculty Mentor	Prof. Anilsh P. Jacob	Sign	
----------------	----------	------------------------	-----------------------	------	---

INITIALLY PROGRESS REPORT (FPR) FROM INDUSTRY MENTOR

Name of student	XXXXXXXXXX	Department	15/03/24 - 11/04/24		
Industry Organization	XXXXXXXXXXXX	Date/Duration	DD/MM/YR - DD/MM/YR		
Criterion	Poor	Average	Good	Very Good	Excellent
Punctuality/Timely completion of assigned work			✓		
Learning capacity/Knowledge up gradation			✓		
Performance/Quality of work			✓		
Behaviour/Discipline/Team work			✓		
Sincerity/Hard work			✓		
Comment on nature of work done/Area/Topic					
OVERALL GRADE (Any one)	POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT				
Name of Industry Mentor	Rakesh Agarwal				
Signature of Industry Mentor	Rakesh Agarwal				
Receiving Date	XXXX 3/04/24	Name of Faculty Mentor	Prof. Ashwin P. Jacob	Sign	XXXX Rakesh Agarwal

ANNUAL PROGRESS REPORT (EPR) FROM INDUSTRY MENTOR

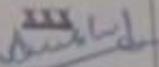
MONTHLY PROGRESS REPORT (FPR) FROM INDUSTRY MENTOR

Name of student	Khushi Dandotiya		Department	15/04/24 - 1/05/24
Industry Organization	XXXXXX		Date/Duration	DD/MM/YR - DD/MM/YR
Criterion	Poor	Average	Good	Very Good
Punctuality/Timely completion of assigned work			✓	
Learning capacity/Knowledge up gradation			✓	
Performance/Quality of work			✓	
Behaviour/Discipline/Team work			✓	
Sincerity/Hard work			✓	
Comment on nature of work done/Area/Topic				
OVERALL GRADE (Any one)	POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT			
Name of Industry Mentor	Rakesh Agarwal			
Signature of Industry Mentor	Jaiswal			

Receiving Date	21/05/24	Name of Faculty Mentor	Prof. xx P. Jacob	Sign	xxx
----------------	----------	------------------------	-------------------	------	-----

INTERNSHIP PROGRESS REPORT (IPIR) FROM INDUSTRY MENTOR

Name of student	Khushi Pandit	Department	CM	Date/Duration	10/05/24 - 15/05/24
Industry Organisation	XXXXXXXXXXXX	DD/MM/YR - DD/MM/YR			
Criterion	Poor	Average	Good	Very Good	Excellent
Reliability/Timely completion of assigned work			✓		
Learning capacity/Knowledge up gradation			✓		
Attendance/Quality of work			✓		
Attitude/Discipline/Team work			✓		
Sincerity/Hard work			✓		


Comment on nature of work
done/ Area/Topic

OVERALL GRADE (A.R.C.
scale)

POOR/AVERAGE/GOOD/VERY GOOD/EXCELLENT

Rakesh Agarwal

Yash

Receiving Date	16/05/24	Name of Faculty Mentor	Prof. Pravin P. Jacob	Sign	
----------------	----------	------------------------	----------------------------------	------	---

