

Analysis of Sustainable Pest Management In Agriculture

Major Project Report

Submitted for the partial fulfillment of the degree of

Bachelor of Technology

In

Chemical Engineering

Submitted By

Subhash Thakur

0901CM201037

UNDER THE SUPERVISION AND GUIDANCE OF

Shivangi Sharma

Assistant Professor

Department of Chemical Engineering

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

A GOVT. AIDED UGC AUTONOMOUS INSTITUTE, AFFILIATED TO R.G.P.V. BHOPAL (M.P.), INDIA

NAAC ACCREDITED WITH A++ GRADE

DEEMED TO BE UNIVERSITY

January- May 2024

DECLARATION BY THE CANDIDATE

I hereby declare that the work entitled "**Analysis of sustainable Pest Management in Agriculture**" is my work, conducted under the supervision of **Prof. Shivangi Sharma, Assistant Professor** during the session Jan-May 2024. The report submitted by me is a record of bonafide work carried out by me.

I further declare that the work reported in this report has not been submitted and will not be submitted, either in part or in full, for the award of any other degree or diploma in this institute or any other institute or university.

Subhash

Subhash Thakur

0901CM201037

Date: 24/05/24

Place: Gwalior

This is to certify that the above statement made by the candidate is correct to the best of my knowledge and belief.

Guided By:

24/05/24

Prof. Shivangi Sharma
Assistant Professor
Chemical Engineering
MITS, Gwalior

Departmental Project Coordinator

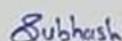
24/05/24

Prof. Shivangi Sharma
Assistant Professor
Department of Chemical Engineering
MITS, Gwalior

Approved by HoD

Anish P Jacob
24/05/24

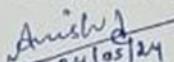
Prof. Anish P Jacob
Assistant professor and
Department Coordinator
Department of Chemical
Engineering
MITS, Gwalior


COORDINATOR
Chemical Engineering
MITS, Gwalior

PLAGIARISM CHECK CERTIFICATE

This is to certify that I/we, a student of B.Tech. in **Department of chemical engineering** have checked my complete report entitled "**Analysis of sustainable Pest Management in Agriculture**" for similarity/plagiarism using the "Turnitin" software available in the institute.

This is to certify that the similarity in my report is found to be **1.9%**, which is within the specified limit (20%).


The full plagiarism report along with the summary is enclosed.

SUHASH THAKUR

0901CM201037

Checked & Approved By:

24/05/24

Prof. ANISH P. JACOB

Assistant professor and department coöordinator
DEPARTMENT OF CHEMICAL ENGINEERING

MTS, Gwalior

ABSTRACT

The overreliance on chemical pesticides in agriculture has led to significant environmental and health issues, including soil degradation, water contamination, and adverse effects on non-target organisms, including humans. As an alternative, biopesticides offer a sustainable, eco-friendly approach to pest management. This report explores the use of biopesticides in the summer cultivation of moong (*Vigna radiata*), assessing their efficacy against pests and their economic viability compared to chemical pesticides.

Moong, a staple legume crop in India, often suffers from pests like pod borers and aphids, which reduce yield. While chemical pesticides are effective, they pose risks such as pest resistance, harm to beneficial insects, and environmental damage. This study evaluates the effectiveness of biopesticides in controlling these pests and enhancing yields.

Recent trends in India show a shift towards biopesticides, driven by awareness of chemical pesticide harms and demand for organic produce. Government initiatives promoting sustainable agriculture have supported this transition, with biopesticides gaining market share and expected to grow faster than chemical pesticides.

Field trials in India demonstrate that biopesticides effectively manage pest populations in moong plantations, with some products matching or surpassing chemical pesticides in efficacy. These trials underscore the potential of biopesticides to improve pest control, promote plant growth, and yield, aligning with integrated pest management strategies to minimize environmental impact.

Keywords

Bio pesticides, Effects of chemical pesticides, Moong plantation in summer, Effect of bio pesticides on moong pest, Trend in biopesticides usage in India, cost analysis.

ACKNOWLEDGEMENT

The Major project has proved to be pivotal to my career. I am thankful to my institute, **Madhav Institute of Technology and Science** to allow me to continue my disciplinary/interdisciplinary project as a curriculum requirement, under the provisions of the Flexible Curriculum Scheme (based on the AICTE Model Curriculum 2018), approved by the Academic Council of the institute. I extend my gratitude to the Director of the institute, **Dr. R. K. Pandit** and Dean Academics, **Dr. Manjaree Pandit** for this.

I would sincerely like to thank my department, **Department of Chemical Engineering**, for allowing me to explore this project.

I am sincerely thankful to my faculty mentors. I am grateful to the guidance of **Prof. Shivangi Sharma**, Assistant Professor, Department of Chemical Engineering, for her continued support and guidance throughout the project. I am also very thankful to the faculty and staff of the department.

Subhash
SUBHASH THAKUR

0901CM201037

CONTENT

Table of Contents

Declaration by the Candidate	i
Plagiarism Check Certificate.....	i
Abstract	iii
Acknowledgement.....	iv
Content	v
Acronyms	vi
Nomenclature	vii
List of Figures	viii
List of Tables	ix
Chapter 1: Introduction	1
Chapter 2: Literature Survey	5
Chapter 3: Problem Statement	9
Chapter 4: Methodology.....	10
Chapter 5: Observation and Result	20
Chapter 6: Conclusion.....	24
Chapter 7: Relevance To The Society And Objective	25
References	27
Turnitin Plagiarism Report.....	30

ACRONYMS

Agriculture – agr.

Management – Mngmnt

Figure – Fig.

Botanical- bot.

Cost – cst.

Collect – cllct

Suspension Concentrate – SC

Soluble Powder – SP

Emulsifiable Concentrate – EC

Soluble liquid – SL

Wettable Powder – WP

Water-dispersible granules – Wg

NOMECLATURE

NEEM	<i>Azadiracta indica</i>
TURMERIC	<i>Curcuma longa</i>
GARLIC	<i>Allium sativum</i>
TOBACCO	<i>Nicotiana tabacum</i>
MOONG	<i>Vigna radiata</i>
FLAT BEAN	<i>Phaseolus vulgaris 'Helda'</i>
WHITE FLY	<i>Bemisia tabaci</i>
ARPHIDS	<i>Aphis craccivora</i>
BEAN POD BORER	<i>Maruca vitrata</i>
BROWN MORMORATED STING BUG	<i>Halyomorpha halys</i>

LIST OF FIGURES

S.No.	Figure	Page No.
1.	Fig 1.1 Types of Biopesticides	2
2.	Fig 4.1 Manufacturing proces	11
3.	Fig 5.1 Avg. bug population vs time (white fly)	20
4.	Fig 5.2 Avg. bug population vs time (aphids)	21
5.	Fig 5.3 Bugs population Vs Days	22
6.	Fig 5.4 Summer Moong Plant	24
7.	Fig 5.5 Brown Mormorated Sting Bug On Flat Beans	24

LIST OF TABLES

S.No.	Table	Page no.
1.	Table 4.1 Chemicals present in plant extracts and their action on pests	13
2.	Table 4.2 Colours of different plant extracts	13
3.	Table 4.3 Different Varieties of Moong Suitable for summer Season	14
4.	Table 4.4 operational information about chemical pesticide	15
5.	Table 4.5 fungus based organic pesticide	15
6.	Table 4.6 cost of chemicals pesticides for different pest	16
7.	Table 4.7 cost of organic pesticides	17
8.	Table 4.8 Plant extract based pesticide available in market	17
9.	Table 4.9 Cost of combustion using different source	18
10.	Table 4.10 Cost comparision of different pesticides	18
11.	Table 5.1 efficiency of manufactured pesticide against white fly	19
12.	Table 5.3 Retention time of different pesticide	20

CHAPTER 1:

INTRODUCTION

Pesticides are substances or mixtures of substances intended for preventing, destroying, repelling, or mitigating any pest. Food and Agriculture Organization has defined the term pesticide as any substance or mixture of substances intended for preventing, destroying, or controlling any pest, including vectors of human or animal disease, unwanted species of plants or animals causing harm during or otherwise interfering with the production, processing, storage, transport or marketing of food, agricultural commodities, wood, and wood products or animal feedstuffs, or substances which may be administered to animals for the control of insects, arachnids substances intended for use as a plant growth regulator, defoliant, desiccant or agent for thinning fruit or preventing the premature fall of fruit. Also used as substances applied to crops either before or after harvest to protect the commodity from deterioration during storage and transport [1].

Types of pesticides

Pesticides are commonly classified into three main categories based on organisms against they are used: -

1. Insecticides: - kill insects which feed on crops, live stocks or valuable products.
2. Herbicides: - kills unwanted that occupies useful spaces.
3. Fungicides: - kills fungus that destroys usefulness of desired product.

The demand of these pesticides are increasing continuously from the starting green revolution and with the increasing demand risk associated with them is also increasing therefore there is a need of better alternative, which is bio pesticides. Bio-pesticides are like the types of pesticides that are derived from plant extracts and have very little or no effect on human health and the environment. According to the Indian Council of Agricultural Sciences (ICAR), biopesticides are natural or manmade substances that control pests in agricultural fields. They are non-toxic, environmentally friendly, and can be sometimes cheaper than other pesticides. Bio- pesticides are derived from microorganisms, plants, or pheromones. Biopesticides are made from naturally occurring substances that control pests by nontoxic mechanisms and in an eco-friendly manner. Biopesticides are an important aspect of sustainable agriculture,

providing effective pest control without harming the environment. Some common plants extracts which works as bio pesticides are neem, garlic, tobacco, turmeric etc.

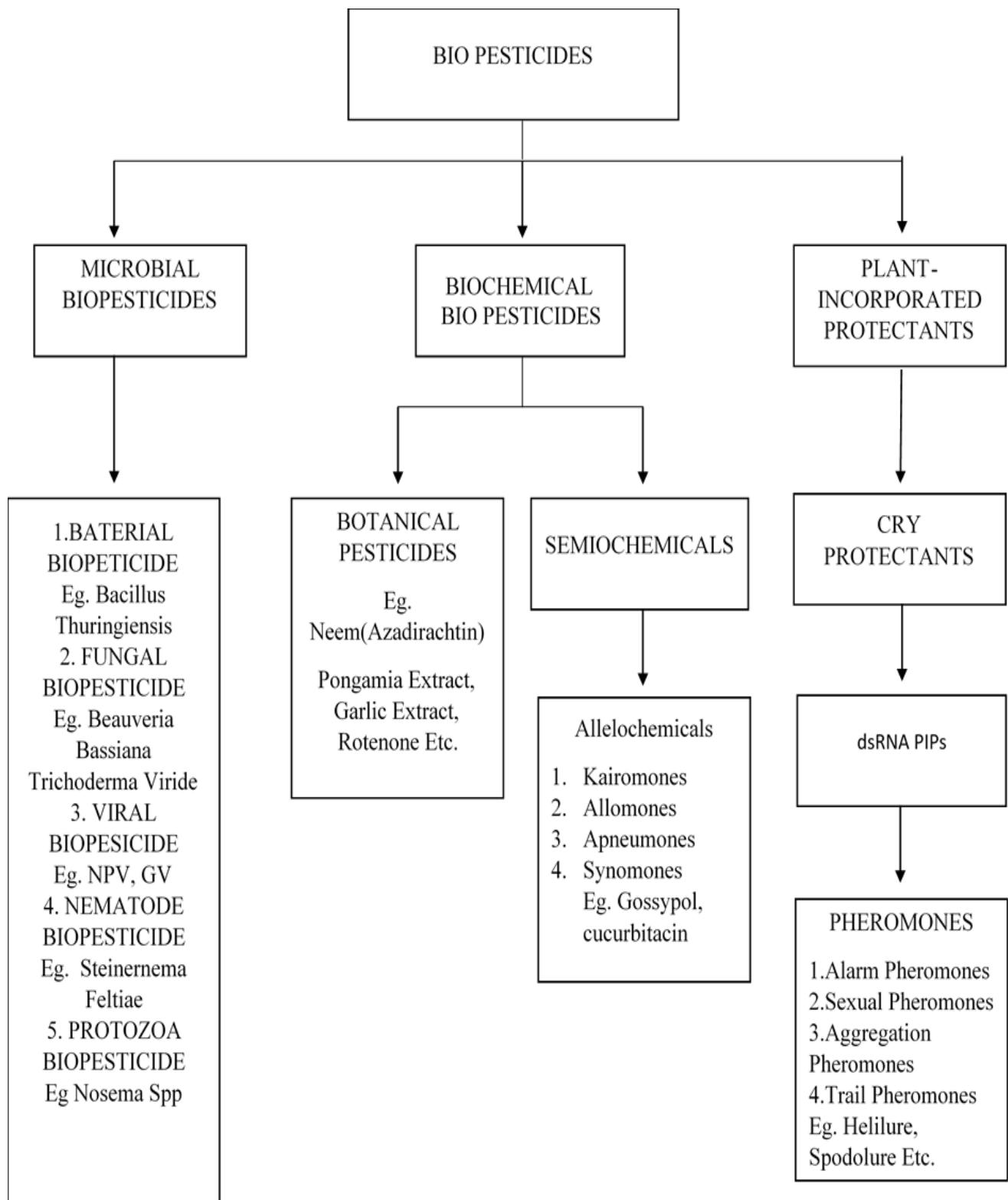


Fig 1.1 Types of Biopesticides

1.1 NEEM

Azadirachta indica known as the Indian neem plant is an evergreen, hard tree that is native to the sub-continent. It can easily be grown in nutrient-poor soil and can survive even in dry harsh conditions. It is known to be friendly with other vegetation but it is disliked by insects! Both leaves and fruit of the new plant are known to have a bitter taste having fungicidal, insecticidal, and nematicidal properties^[36]. Recently, the neem plant has gathered much attention it is a potential source of drugs and eco-loving pesticides^[32]. Leaves of the neem plant have been used as a substrate for producing vermicompost. The effect of vermicompost application on the growth and yield of the brinjal plant has been studied. It has been revealed that the application of neem vermicompost produces potential effects on plant growth^[32].

1.2 TOBACCO

Tobacco is a commodity that is used as the main ingredient for cigarettes. Tobacco commodities and cigarette products have high economic value and are a source of farmers' income, and domestic government revenues and employment. This makes the cigarette industry one of the irreplaceable industries in the country, while the fact that many people want to stop the industry because of the negative effects caused by cigarettes. But if the tobacco industry is stopped, this impacts the lives of tobacco farmers, and the government's income and eliminate one of the employment opportunities chance in Indonesia. On the side of the dangerous effect of raw cigarette material, tobacco has other functions that are not widely known, namely as a biopesticide^[13].

1.3 GARLIC

Garlic (*Allium sativum*), which possesses natural fungicidal and pesticide properties, effectively works to control pests. It serves as an excellent economical, non-toxic biological pesticide for use in agriculture. The natural pesticide (garlic) eliminates a strong aroma that can provide an olfactory camouflage against insects. Thus, masking their normal host-finding or feeding cues. Aphids, ants, termites, white flies, beetles, borers, caterpillars, slugs, and armyworms are some of the pests that can be suitably controlled using garlic^[14].

1.4 TURMERIC

Turmeric, also known as *Curcuma longa*, is a flowering plant that grows natively in the Indian subcontinent and Southeast Asia. It is a spice that shares a genetic relation with ginger and has

been utilized in cooking for numerous years. Turmeric is notably recognized for the enhancement it brings in terms of color, flavor, and nutritional value to various dishes and cuisines. apart from that it is a good source of biopesticide.

1.5 MOONG CULTIVATION IN SUMMER

Moong (*Vigna radiata*), also known as mung bean, is a key legume crop in India, especially valued for its nutritional benefits and soil-enriching properties due to nitrogen fixation. Cultivating moong during the summer season, which spans from March to June, presents unique agronomic challenges and opportunities. The high temperatures and limited rainfall during this period necessitate efficient water management and robust pest control strategies to ensure optimal crop yield and quality. Pest management is a critical aspect of moong cultivation during the summer. Common pests, including pod borers (*Helicoverpa armigera*), aphids (*Aphis craccivora*), and whiteflies (*Bemisia tabaci*), can cause significant yield losses. Traditionally, chemical pesticides have been employed to combat these pests, but their extensive use has led to negative consequences such as pest resistance, environmental pollution, and health hazards for humans and animals.

CHAPTER 2: LITERATURE SURVEY

Biopesticides are major components of integrated pest management and potential alternative to their chemical counterparts. Biopesticides represent only 2.89 per cent of the overall pesticide market in India^[25]. In India, so far only 12 types of biopesticides have been registered under the insecticidal act, 1968^[18]. Biopesticide market is growing very rapidly. The growth rate of biopesticides over the next 10 years has been forecast at 10-15 per cent per annum, in contrast to 2 per cent of chemical pesticides^[35]. In India, the annual growth rate of biopesticides is estimated to be 2.5 per cent.

Biopesticides, which include microbial pesticides, biochemicals from natural sources, and genetically modified organisms, offer an eco-friendly alternative to chemical pesticides. Despite their potential benefits to agriculture and public health, the adoption of biopesticides in India remains low, at only 2.5% of the total pesticide market. The global production of biopesticides exceeds 3,000 tons annually and is rapidly increasing. These products are target-specific and safer for non-target organisms, including humans^[18].

Chemical pesticides have been widely used in agriculture to control pests, but their adverse effects are increasingly well-documented. These pesticides contribute to environmental pollution, contaminating soil and water sources, and harming non-target organisms, including beneficial insects, birds, and aquatic life^[22]. Human health risks associated with chemical pesticides include acute poisoning and chronic illnesses such as cancer, neurological disorders, and reproductive issues^[21]. Moreover, the overuse of chemical pesticides can lead to pest resistance, necessitating higher doses and more toxic alternatives^[27]. The persistence of chemical residues in food poses additional risks to consumers, prompting a shift towards safer alternatives like biopesticides^[29]. This growing awareness underscores the urgent need for sustainable pest management practices.

Biopesticides are a good alternative to the synthetic pesticide. The various properties of different parts of neem (*Azadirachta indica*) are used as insecticide, antifeedant, hormonal, antifungal, antiallergic, antidermatic, anti-inflammatory, antiscabie larvicidal and spermaticidal activity etc^[5]. Azadirachtin, chemically a tetranorterpenoid component of neem acts on the mitotic cells and blocks the microtubule polymerization. Certain activities of genes and proteins are also altered by azadirachtin. As a botanical insecticide azadirachtin is effective

against many biological processes. Likewise Nim80 and Neemas are also neem products that produce the insecticidal activity^[12]. The neem extract increased shoot height, number of branches, number of leaves, number of buds, number of flowers and number of fruits of tomato plant over controls in different treatments. Neem extract was found effectively in controlling canker (50.32%), early blight (55.12%), wilt (59.45%), leaf spot (55.48%), fruit spot (41.93%), blossom end rot (40.86%) and sun scald (25.61%) in comparison to controls under field condition^[10]. Neem extracts are better alternative to chemical pesticides as they are eco-friendly, non-toxic and cost effective.

Turmeric (*Curcuma longa*) is an effective biopesticide due to its curcumin content, which exhibits antifungal, antibacterial, and insecticidal properties. It can control various pests and pathogens, offering an eco-friendly alternative to chemical pesticides^[20]. The fresh juice, the aqueous extracts and the essential oil of the plant are endorsed with fascinating pesticidal properties against certain pests of agricultural importance as well as a perceptible repugnant activity against noxious mosquito species^[2]. Turmeric is biodegradable and poses minimal risk to non-target organisms, supporting sustainable agriculture practices. Ongoing research aims to optimize its formulations and application methods to enhance its practical utility in diverse agricultural settings^[9]. Garlic (*Allium sativum*) possesses strong insecticidal and fungicidal properties due to its sulfur compounds, particularly allicin. It effectively controls pests like aphids, termites, and fungi, offering a safe alternative to chemical pesticides. Biodegradable and safe for non-target organisms, garlic supports sustainable agricultural practices. Research focuses on optimizing its use to maximize effectiveness in pest control^[9].

Tobacco (*Nicotiana tabacum*) is recognized for its biopesticidal properties, primarily due to the presence of nicotine, which has strong insecticidal effects. Tobacco extracts are effective against a variety of pests, including aphids, caterpillars, and beetles, providing a natural alternative to chemical pesticides^[24]. Biodegradable and less harmful to non-target organisms, tobacco-based biopesticides support sustainable agriculture practices. Despite its potential, the adoption of tobacco as a biopesticide requires further research to optimize application methods and formulations^[19].

Green gram or moong beans (*Vigna radiata*) is a vital legume crop in India. Mungbean accounts for about 12% of the total pulse production in South and Southeast Asia. The nine South and Southeast Asian countries, namely, Bangladesh, Burma, India, Indonesia, Nepal, Pakistan, the

Philippines, Sri Lanka and Thailand, together increased their mungbean production from 1.1 million ton 1976 to 1.8 million ton 1986, registering a growth rate of 4.5%, against a growth rate of only 0.5% for total pulses^[39]. The cultivation of summer moong faces significant challenges, including high temperatures and limited water availability, which require effective water management and pest control strategies^[17]. Typically grown in well-drained soils, moong requires proper irrigation to alleviate heat stress. Common pests such as pod borers, aphids, and whiteflies have traditionally been managed using chemical pesticides^[12]. However, the negative impacts of chemical pesticides on the environment and human health have driven the exploration of eco-friendly alternatives like biopesticides. Biopesticides offer a safer approach to pest management, aligning with sustainable agricultural practices^[11]. Ongoing research aims to optimize the use of biopesticides for effective pest control in moong cultivation.

Chemical pesticides such as acephate, dimethoate, and monocrotophos have been widely used in agriculture, including the cultivation of moong (*Vigna radiata*). Despite their effectiveness in controlling pests, these chemicals pose significant risks to human health and the environment.

Acephate, for example, is commonly used to manage a variety of pests in moong fields. However, exposure to acephate can cause symptoms such as nausea, dizziness, and confusion due to its neurotoxic effects, potentially leading to long-term neurological damage with prolonged exposure. In moong cultivation, the presence of acephate residues can be detrimental to both farmers and consumers.

Dimethoate is another pesticide frequently used in moong cultivation to control aphids and other pests. It is known to be highly toxic, causing rapid organophosphate poisoning. Symptoms of exposure include headaches, sweating, muscle twitching, and in severe cases, death. Chronic exposure to dimethoate can result in reproductive harm and long-term neurological issues such as depression and anxiety. The use of dimethoate in moong fields raises concerns about its impact on the health of those involved in the agricultural process and the safety of the food produced.

Monocrotophos, a pesticide known for its acute toxicity, is also employed in the management of pests in moong cultivation. It has been linked to numerous cases of poisoning, causing symptoms such as blurred vision, dizziness, numbness, and severe headaches. In Egypt, a study revealed that farmers exposed to monocrotophos showed a high incidence of chronic pesticide

poisoning symptoms. Furthermore, monocrotophos has been associated with a high fatality rate in poisoning incidents, highlighting its danger. The use of monocrotophos in moong farming not only poses a threat to farmers but also to consumers due to potential residue on the crops.

Biopesticides are gaining traction as an effective and sustainable alternative to chemical pesticides for managing major pests of green gram (*Vigna radiata*), commonly known as mung bean. Several studies highlight the efficacy of biopesticides in controlling key pests such as the pod borer (*Helicoverpa armigera*), aphids (*Aphis craccivora*), and whiteflies (*Bemisia tabaci*).

Pod Borer (*Helicoverpa armigera*) is one of the most damaging pests of green gram, causing significant yield losses. Biopesticides like *Bacillus thuringiensis* (Bt) and nuclear polyhedrosis virus (NPV) have been shown to effectively manage pod borer infestations. Bt, a microbial pesticide, produces toxins that are lethal to the larvae of *H. armigera*, leading to reduced pest populations and less crop damage^[12]. NPV, a viral biopesticide, infects and kills the larvae, providing a biological control method that minimizes the need for chemical interventions.

Aphids (*Aphis craccivora*) are another major pest affecting green gram, known for their ability to transmit plant viruses and cause direct damage through sap-sucking. Neem-based biopesticides, derived from *Azadirachta indica*, have shown considerable success in controlling aphid populations. Neem oil and neem extracts contain azadirachtin, which disrupts the growth and reproduction of aphids, leading to reduced pest numbers and less plant stress^[38].

Whiteflies (*Bemisia tabaci*) are notorious for their role in transmitting viral diseases and causing sooty mold on plants. Biopesticides such as neem oil and entomopathogenic fungi like *Beauveria bassiana* have been effective against whiteflies. Neem oil works by repelling and inhibiting the feeding of whiteflies, while *B. bassiana* infects and kills them through fungal spores, reducing their population^[11].

Phosalone and NeemSeed Kernal Extract 10 per cent were equally effective in controlling defoliators on the intercropped green gram (80.55 and 68.57 per cent respectively) but varied in the sole crop. The grain yield was 90.32 per cent higher in the carbofuranl phosalone treated agroforestry plots compared to untreated^[26].

CHAPTER 3:

PROBLEM STATEMENT

The widespread use of chemical pesticides such as acephate, dimethoate, and monocrotophos in the cultivation of moong (*Vigna radiata*) and other plants poses significant health risks to farmers and consumers, as well as environmental hazards. These pesticides, while effective in controlling pests, are associated with severe acute and chronic health effects, including neurotoxicity, reproductive harm, and in extreme cases, fatal poisoning. Additionally, their residues on crops can lead to health issues for consumers. Despite their known dangers, the reliance on these chemical pesticides persists due to their immediate efficacy and lack of widespread adoption of safer alternatives. The challenge lies in identifying and promoting sustainable pest management practices, such as the use of biopesticides, that can provide effective pest control without compromising human health or environmental safety. There is an urgent need for comprehensive strategies to educate farmers on the benefits of biopesticides, improve accessibility to these safer alternatives, and implement regulatory measures that encourage the reduction of hazardous chemical pesticide use in moong cultivation.

CHAPTER 4:

METHODOLOGY

Bio-pesticide can be prepared very easily. Even extracts of some work as bio-pesticide. The method adopted is simple extraction of juice from different parts of plant such as leaves, rhizome, root etc.

4.1 PREPARATION

4.1.1 MATERIAL REQUIRED:-

Water, Neem and tobacco leaves, garlic and turmeric, containers, boiling container and cotton clothe.

4.1.2 STEPS OF PREPARATION

To prepare a blend of bio pesticide following steps and materials are required: -

1. Collect leaves of neem and tobacco, turmeric and garlic.
2. Weigh 750 g of tobacco leaves, 500g of neem leaves, 250g of garlic and 250g of turmeric.
3. Crush the turmeric in fine power and half liter of water and let it rest for 20 minutes.
4. After that filter the solution using cotton cloth in a separate container.
5. Now grind the garlic and squeeze it extract using cotton cloth, around 100-150ml of juice will be extracted from it.
6. Boil the leaves of neem and tobacco plant in 2 liters of water for around 1-2 hrs. (Until half the solution is left).
7. Mix all the solution to in container. The ratio of all the solution may vary in accordance to crops and pest attacks.

Fig 4.1 Manufacturing process

4.2 GENERAL PROPERTIES

4.2.1 CHEMICAL CONTENTMENT OF PLANT EXTRACTS

Extract	Chemical	Effects
	Azadirachtin	<p>It may be creating a reduction in the feeding habit which is putting a halt on molting process; larvae and pupae are facing untimely death, and also a possible cause infertility in the emerging adults. This all depends on the given dose ^[5]</p>
	Saponins	<p>They have antimicrobial activity, that inhibits molds, and protecting plant from attack of insects^[5].</p>

Neem	Nim 80 and azatin	Both neem products have been shown to produce the insecticidal activity or growth effects. At low concentration of azatin the growth rate were reduced while increasing the concentration lead to high mortality rate. Larvae become unable to feed when they were exposed to azatin. It has been shown that azatin acts as direct toxicant instead of inhibiting its growth. On the other hand Nim 80 has showed effectiveness against larval development. ^[5]
Tobacco	Nicotine	Nicotine, which is believe to be a potential nerve poison, is used as a raw material for various types of insecticides or is a very strong addictive substance. It's highly toxic to some insects and fungal species; such as, the Colorado potato beetle. Moreover, when used correctly, nicotine can help control pests in agricultural settings ^[6]
Garlic	Allicin	It does possess powerful antimicrobial properties. It can act as a natural pesticide by repelling or even, killing various pests; including various insects and nematodes which can heavily damage crops. ^[11]

Turmeric	Curcumin	It is the main and most important bioactive compound found in turmeric, it has shown remarkable insecticidal and larvicidal activities against a wide variety of pests. It can effectively disrupt the growth and development of insects and significantly interfere with their feeding habits, making it a potentially promising candidate for use as a biopesticide. Turmeric is truly a versatile and powerful natural remedy that continues to show immense potential in pest control. ^{[11][13]}
	Ar-turmerone	It is a natural compound found in turmeric oil. It has been studied for its insecticidal and repellent properties against various pests, including mosquitoes and agricultural pests ^[11]
	Turmeronol A	It is a diterpene compound isolated from turmeric that has shown insecticidal activity against agricultural pests. ^[12]

Table 4.1 Chemicals present in plant extracts and their action on pests

4.2.2 colours of plant extract

EXTRACT	COLOUR
Garlic	Algae green
Neem	Greenish transparent liquid
Tobacco	Pinkish foam during boiling
Turmeric	Orangish yellow
Final solution	Dusty green with a hint of pink colour

Table 4.2 Colours of different plant extracts

4.3 Moong cultivation in summer

4.3.1 selection of variety

The time span of zayad is very short. The variety choosen should have duration of about 2 months so that farmers are able to prepare their fields before the starting of rabi season.

Variety	Duration	Average production
IPM 205-7 (VIRAT)	52-55 Days	5-6 Q./acre

PDM 139 (SAMRAT)	60-65 Days	5-6 Q./acre
KM 2342 (AZAD Moong 1)	62-55 Days	4-5 Q./acre
HUM 16 (Malviya Jankalyani)	55-60 Days	5-6 Q./acre
Malviya Janchetna	60-65 Days	5-6 Q./acre
IPM 410-3 (SHIKHA)	60-65 Days	7-8 Q./acre

Table 4.3 Different Varieties of Moong Suitable for summer Season

4.3.2 PEST ATTCKS ON MOONG

POD BORER (*HELICOVERPA ARMIGERA*): The pod borer is a major pest of moong, causing significant damage by boring into pods and feeding on developing seeds, leading to considerable yield loss.

APHIDS (*APHIS CRACCIVORA*): Aphids are small sap-sucking insects that can weaken moong plants by draining vital nutrients, causing stunted growth, and transmitting viral diseases.

WHITEFLIES (*BEMISIA TABACI*): Whiteflies are tiny, winged insects that feed on the underside of moong leaves, excreting honeydew that promotes sooty mold growth and reducing photosynthetic efficiency.

4.3.3 CHEMICAL PESTICIDES USED IN MOONG PLANT

Chemical	Dose	Action	Targeted pest
Asphate 75 sp	200-280g/acre	Organophosphate insecticide with contact and systemic action	Sucking and chewing insects such as leafhoppers, aphids, thrips, flea beetles, corn borers, cabbage worms, diamondback moths, budworms, and bollworms
Dimethoate 30 ec	300-350ml/acre	Organophosphate insecticide that acts through contact, stomach, and systemic modes	Bugs, stem borers, aphids, beetles, weevils etc.
Monocrotophos 36 sl		Organophosphate insecticide that affects the	Aphid, leaf hopper and thrips, gray weevil, bollworms, brown

	600-800 ml/acre	nervous system by inhibiting acetylcholinesterase (ache), an enzyme that's essential for normal nerve impulse transmission	plant hopper, green leaf hopper, leaf roller/foder, pod borer, plume mouth
Thiodicarb 75 wp(banned)	250g/acre	Primarily acts as an ingestion toxicant with some complimentary contact action and act by inhibiting cholinesterase enzyme.	Major lepidoptera and coleoptera pests and some hemiptera and diptera

Table 4.4 operational information about chemical pesticide

Other than these Thiamethoxam 25% Wg(40-50g/acre), Spinosad (75-100ml/acre), Indoxacarb 14.5 sc (250-300 ml/acre) are also common pesticides in moong plant.

4.3.4 pesticide used in organic farming

Targeted pests	pesticide	dosage
Sucking insect	Verticillium lecanii (contact based action, fungal)	2l/acre
Feed insects (caterpillars)	Boveria bassiana (contact based action, fungal)	400ml/acre

Table 4.5 fungus based organic pesticide

4.4 experiment design

4.4.1 Spray on moong

The plant extract is test on moong plantation in summer season. The extract is tested on different concentration. Usually the pesticides available of similar composition and one which prepared from neem kernel have optimum dosage of 2ml/l of water, so the base concentration is taken as 2ml/l and other concentrations are 5ml/l and 10ml/l.

The spraying is done twice during the experiment similar to chemical pesticide spraying.

4.4.2 SPRAY ON FLAT BEANS

This experiment is conducted on a particular plant of flat bean affected by brown mormarated stink bug with an optimum concentration of pesticide.

4.4.3 CONTROL FIELD AND UNAFFECTED PLANT

The last set of experiment is conducted on control field (untreated field) and healthy unaffected plant without diluting the solution.

4.5 COST ANALYSIS

4.5.1 CHEMICAL PESTICIDES ON MOONG PLANT

Pest	Pesticide	Cost in INR
Bean pod borer maruca testulalis	Broflanlidie 17ml/acre (heavy acttacks)	960(17 ml) BASF Exponus Broflanilide 300 GL SC Insecticide
	Spinosad 75-100 ml/acre (heavy attack)	750(50ml) krishi seva kendra
	Indoxacarb 14.5 sc light attack 250-300 ml/acre	473 (100ml) kite
White fly(Aleyrodidae)	Monocrotophast 36% sl 400-450ml per acre	330/litre, Gujrat kisan fertilizer co.
	Acephat 75% sc 300-400gr/acre	240/250gm Asataf tata
	Dimethoate 30 % ec 600ml/acre	650/l, demat katyayani
Aphid	<u>Thiamethoxam 25% Wg</u> 40-50g/acre	610/500g, triayo iffco

Table 4.6 cost of chemicals pesticides for different pest

4.5.2 ORGANIC PESTICIDES

Pests	pesticide	Cost in INR
Sucking insect	Verticillium lecanii 2l/acre	330/l kattyayani krishi seva kendra
Feed incsects (carterpillars)	Boveria bassiana 400ml/acre	330/l katyayani, kirshi seva kendra

Table 4.7 cost of organic pesticides

4.5.3 MARKET AVAILABLE PLANT BASED BIO-PESTICIDES

Plant Extract	Major Chemical Composition	Cost(INR) / Product
Neem Based	0.03% Azadirachtin	330/L Azasik Sikko
Turmeric Based	5% Curcumin	1250/L Curcumin Extraction RD Suraksha Bio.
	1% Curcumin	620/L Katra Fertilizers And Chemicals Private Limited
Garlic Neem Based	—	200/L Neem Garlic Pesticide
Tobacco	1-2% Nicotine	237/0.9kg Nicotex-D Tobacco Dust Powder

Table 4.8 Plant extract based pesticide available in market

4.5.4 PLANT BASED BIOPESICIDE MANUFACTURING COST

Energy cost - Fire wood burned =10 kg (185 MJ) = 30 Rs

4.5.5 EQUIVALENT COST

SOURCE	CELORIFIC VALUE	COST OF COMBUSTION (INR)
LPG	55mj/Kg – 3-3.5 Kg	200-220 Rs
Coal	23.86 Mj/Kg – 8kg	64 Rs
Natural Gas	50mj/Kg – 3.5 – 4 Kg	320rs
Electric Heater	26 Kwh=93.6 Mj	416 Rs

Table 4.9 Cost of combustion using different source

4.5.6 MATERIAL COST

Neem Leaves – Easily available around the vicinity of village and has no cost for small scale.

Tobacco Leaves – Similar to neem it also has no cost for small scale. Even if not available market price of fresh non-damaged tendu patta is 400/kg but biopesticide don't have such requirement it can be made from leftover or damaged leaves and can be easily available at 1/10 of price of fresh tendu patta.

Garlic – This season it has hit the lowest price of 6rs/kg but currently its mandi rate is 9443.3/quintal in MP (source commodityonline)

Turmeric – Currently it is 148.83 INR/quintal but it has hit the lowest market rate of 55 rs/kg in MP (source commodityonline)

Total cost of manufacturing = $30 + 25(100\text{rs/kg turmeric}) + 23.5(94\text{rs/kg garlic}) = 78.5 \text{ INR}$ for 2 liters of solution.

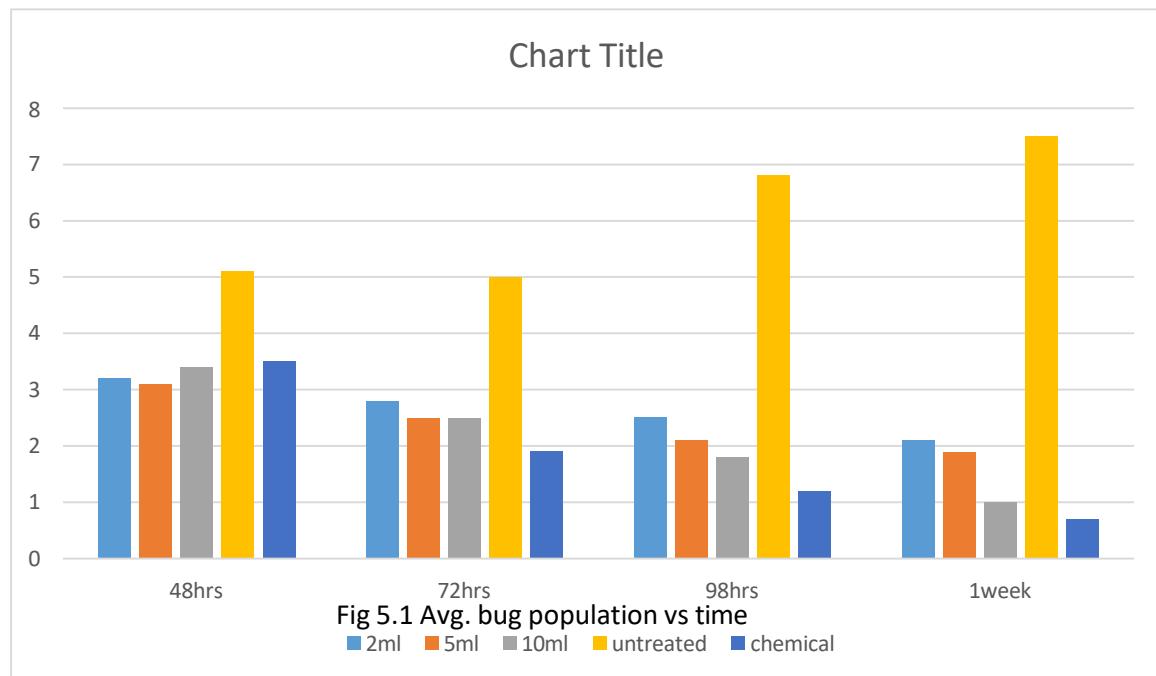
4.5.7 COST COMPARISION

Pesticide Category	Amount Of Spray	Pesticide Cost (INR)	Percentage Saving
Chemical pesticide	200 liters of spray	$48+165+960 = 1,173$	93.32%
Bio pesticides(organic farming)	200 liters of spray	$132+660= 792$	90.08%
Plants extract bio pesticides available in market	2ml/l for 200 liter spray	$80+237+210+250=777$	89.89%
Homemade bio pesticide	10ml/l for 200l spray	78.5	–

Table 4.10 Cost comparision of different pesticides

$$\text{Percentage saving} = \frac{\text{cost of pesticide X} - \text{cost of home made pesticide}}{\text{cost of pesticide X}} * 100$$

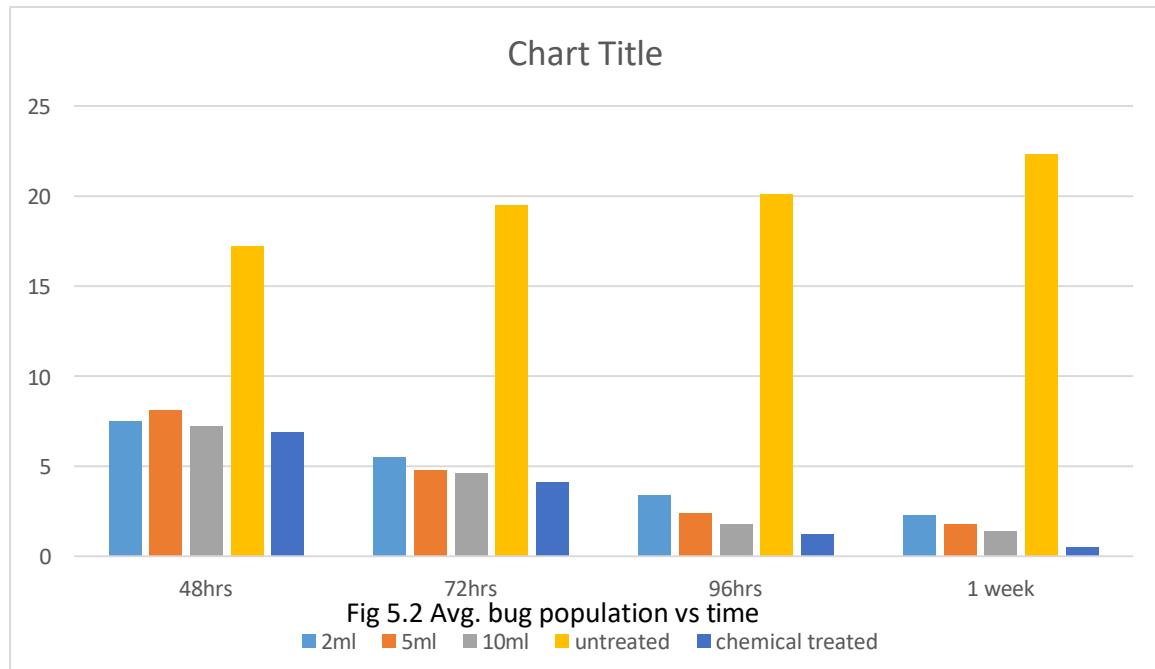
CHAPTER 5:


OBSERVATION AND RESULT

5.1 OBSERVATION

5.1.1 SPRAY ON SUMMER MOONG

The field test is conducted in parts where ten plants were observed randomly during the whole experiment process. Four zones are divided in the field such that three zones are sprayed with 2ml, 5ml, and 10ml pesticide dose and last zone is left untreated.


White Fly

Application	Pretreatment(Average Bugs In 10 Plants Randomly)	Efficiency
2ml	5.2	59.6%
5ml	5.3	64.15
10ml	5.6	75%
Untreated	5.3	86.78%

Table 5.1 Efficiency of manufactured pesticide against white fly

Arphids

application	Pretreatment(average bugs in 10 plants randomly)	Efficiency
2ml	15.8	84.31%
5ml	13.2	86.36%
10ml	14.9	90.6%
untreated	14.3	94.4%

Table 5.2 efficiency of manufactured pesticide against arphids

$$\text{Efficiency} = \frac{\text{Pretreatment condition} - \text{Condition after 1week}}{\text{Pretreatment condition}} * 100$$

Maruca

Maruca vt. Formed coconas inside the flower. Due to the extreme weather condition no major traces of pest were found inside the flower.

5.1.2 SPRAY ON FLAT BEANS

10ml/l of manufactured pesticide is sprayed on single plant of flat bean against brown mormorated sting bug and following observation is obtained

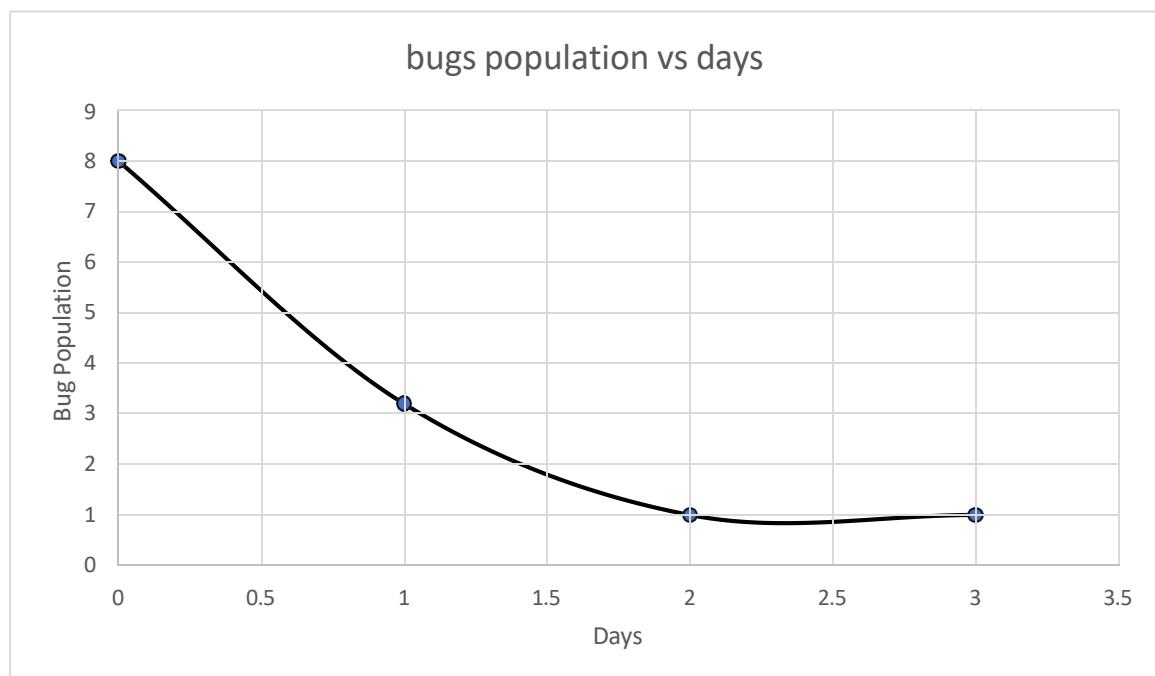


Fig 5.3 Bugs population Vs Days

5.1.3 SPRAY ON UNAFFECTED HEALTHY PLANTS

Concentrated solution of pesticide is sprayed on different plants to get some idea about its effects. The following points have been observed:-

- After 2-3 hrs of spray the solution on plant surface get dried and formed a thick layer, which is probably cause due to presence of tobacco extract.
- No ants were observed after the spray but they had been observed before the spray
- The presence of bees was unhindered by presence of pesticide but no. of butterflies is reduced.
- The retention time of pesticide is observed around 15 days

5.1.4 RETENTION TIME

Pesticide	Retention Time On Plant
Spinosad	It Breaks Down In 1-2 Days But Have A Killing Effect Upto 4 Weeks
Acephate	10-15 Days
Dimethoate 30 % Ec	7-14 Days
Thiamethoxam 25% Wg	10-21 Days

Boveria Bassiana	It May Stay On Field Upto The Day Of Harvestion Depending On Temperature Condition
Plant Extract	10-15 Days Depending On Concentration And Is Subjected To Rain.

Table 5.3 Retention time of different pesticide
(Source: product specification given their selling website)

5.2 RESULT

The pesticide manufactured is much cheaper as compared to other alternatives. It also shows some positive impacts on non-targeted bugs. It is also seen that sprayed plant get healed faster. The retention time of biopesticide manufactured is lower than most of the chemical pesticide

Fig 5.1 Summer Moong Plant

Fig 5.2 Brown Mormorated Sting Bug On Flat Beans

CHAPTER 6:

CONCLUSION

This report underscores the growing relevance and potential of biopesticides as sustainable alternatives to chemical pesticides in agriculture, particularly in the cultivation of moong (*Vigna radiata*). The findings indicate that biopesticides such as neem, garlic, turmeric, and tobacco not only effectively control pests like pod borers, aphids, and whiteflies but also offer significant health and environmental benefits. Chemical pesticides, such as acephate, dimethoate, and monocrotophos, though effective, pose severe risks to human health, including neurological damage and chronic illnesses, as well as environmental hazards like soil and water contamination.

Biopesticides, on the other hand, are biodegradable, non-toxic to humans and non-target organisms, and support sustainable agricultural practices. The use of biopesticides aligns with integrated pest management (IPM) strategies, which promote the use of multiple, synergistic pest control methods. This not only reduces the risk of pest resistance but also minimizes environmental impact. Additionally, the economic analysis shows that while the initial costs of biopesticides may be higher, their long-term benefits include enhanced soil health, reduced application frequency, and eligibility for organic certification.

Overall, the adoption of biopesticides presents a viable path towards sustainable agriculture, improving food safety, reducing toxic exposure for farmers, and mitigating environmental damage. Continued research and field trials are essential to optimize biopesticide formulations and application methods, ensuring their efficacy and economic feasibility for widespread agricultural use.

CHAPTER 7:

RELEVANCE TO THE SOCIETY AND OBJECTIVE

7.1 SOCIAL RELEVANCE

7.1.1 ENVIRONMENTAL RELEVANCE

Reduction In Chemical Residue: The use of biopesticides reduces the risk of harmful chemical residues in soil and water bodies, preventing contamination of local ecosystems and protecting aquatic life.

Soil Health Preservation: Biopesticides contribute to maintaining soil health by avoiding the negative impacts of chemical pesticides, which can disrupt soil microbial communities essential for nutrient cycling and soil fertility.

Mitigation Of Pesticide Resistance: Integrating biopesticides into pest management strategies can help mitigate the development of pesticide resistance in pest populations, ensuring long-term effectiveness and reducing the need for higher doses of harmful chemicals.

Promoting Organic Farming: The project supports the trend towards organic farming and the production of residue-free crops, meeting the growing consumer demand for environmentally friendly and health-conscious agricultural products.

7.1.2 ECONOMIC RELEVANCE

The cost of manufacturing of bio-pesticide is very less as compare to other market available pesticides. These pesticides consume a major chunk of farmer's income. Plant based pesticide allowed them to use the saved money in other necessary investments.

7.1.3 HEALTH RELEVANCE

Farmers' Health: Bio pesticides, derived from natural sources, are typically less toxic than chemical pesticides. This reduces the risk of acute poisoning and long-term health issues for farmers who handle these substances regularly. By minimizing exposure to harmful chemicals, biopesticides help protect farmers from respiratory problems, skin disorders, and other health complications associated with chemical pesticide use.

Food Safety: Bio pesticides contribute to safer food production by leaving minimal to no harmful residues on crops. This enhances the overall safety and quality of food products, ensuring that consumers are not exposed to potentially dangerous chemical residues. The use of biopesticides aligns with the increasing consumer demand for organic and residue-free produce.

Toxic Reduction: The application of biopesticides helps in significantly reducing the environmental and health hazards posed by synthetic chemicals. They break down more quickly in the environment and target specific pests, thereby preserving beneficial insects and maintaining ecological balance. This reduces the cumulative toxic load on the ecosystem, promoting a healthier and more sustainable agricultural practice.

7.2 OBJECTIVE

1. Analyzed the different concentrations dosage of manufactured bio-pesticide
2. Analyzed the cost of manufacturing of pesticides with commercially available pesticide
3. Gained knowledge about moong plantation in summer.
4. Studied the effect of concentrated pesticide sprayed on healthy plant
5. Understood the mechanism of different kinds pesticides action and feeding habit of moong pests.

REFERENCES

1. *Indian Council of Agricultural Research*
2. *Gobinda Chandra Roya , Kaushik Chakraborty , Parthasarathi Nandy, M. N. Moitra Pros and Cons of Curcumin as Bioactive Phyto, Compound for Effective Management of Insect Pests, Global Society of Scientific Research and Researchers.*
3. *Mandi price today(may 2024), commodityonline.*
4. *Chemical pesticides,(may 2024), Indiamart.*
5. *‘Preeti Acharya, Showkat Ahmad Mir, Binata Nayak(dec. 2017) Competence of Biopesticide and Neem in Agriculture, International Journal of Environment, Agriculture and Biotechnology (IJEAB),8.*
6. *Rani, A. (2017). Bioefficacy of extract of turmeric and ginger as potential biopesticides on Sitophilus oryzae. Advanced Scientific Research, 2.*
7. *Pérez, M. P., Torres, P., & Ruiz, M. (2016). Evaluation of the antifungal activity of turmeric (Curcuma longa) essential oils against Botrytis cinerea. Industrial Crops and Products, 84, 246-252.*
8. *Shahzad Ali, S. S. (2016). Effect of biopesticides against sucking insect pests of brinjal crop under field conditions. Journal of Basic & Applied Sciences, 9.*
9. *Pérez, M. P., Torres, P., & Ruiz, M. (2016). Evaluation of the antifungal activity of garlic (Allium sativum) essential oils against Botrytis cinerea. Industrial Crops and Products, 84, 246-252.*
10. *‘ Gayatri Nahak and Rajani Kanta Sahu,(2015). Biopesticidal effect of leaf extract of neem (Azadirachta indica A. Juss) on growth parameters and diseases of tomato, Journal of Applied and Natural Science,7.*
11. *Sharma, A., Kumar, V., & Singh, R. (2014). Biopesticides: an eco-friendly approach for pest control. Journal of Biofertilizers & Biopesticides, 5(1), 1-2.*
12. *Kumar, R., Singh, M., & Tripathi, M. K. (2013). Management of pod borer, Helicoverpa armigera (Hubner) in mung bean. Legume Research, 36(2), 171-174.*
13. *Dawitri, E. (2013). Biopesticide production from tobacco leaves by pyrolysis. Undergraduate Thesis, Universitas*
14. *Ahmad, A. B. (2012). Potential applications of Neem based products as the Health, 6.*
15. *Singh, A., Rachaputi, R. C. N., & Hapgood, K. P. (2011). Optimizing irrigation for summer mung bean (Vigna radiata L.) production in northern Australia. Field Crops Research, 124(2), 181-188.*

16. Saha, S., Singh, N. K., & Sharma, V. (2010). Comparative efficacy of neem and garlic against root-knot nematode, *Meloidogyne incognita* in okra. *Journal of Plant Protection Research*, 50(3), 334-339.

17. Singh, A., Rachaputi, R. C. N., & Hapgood, K. P. (2011). Optimizing irrigation for summer mung bean (*Vigna radiata* L.) production in northern Australia. *Field Crops Research*, 124(2), 181-188.

18. Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An eco-friendly approach for pest control. *Journal of Biopesticides*, 3(1 Special Issue), 186-188.

19. " Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. *Crop Protection*, 29(9), 913-920.

20. Tripathi, P., Dubey, N. K., & Shukla, A. K. (2009). Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by *Botrytis cinerea*. *World Journal of Microbiology and Biotechnology*, 24(1), 39-46.

21. Alavanja, M. C. (2009). Pesticides use and exposure extensive worldwide. *Reviews on Environmental Health*, 24(4), 303-309.

22. Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. *Interdisciplinary Toxicology*, 2(1), 1-12.

23. Sinha, B., & Biswas, I. (2008). Potential of biopesticides in Indian agriculture vis-à-vis rural development. *Science and Technology for Rural India and Inclusive Growth*.

24. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. *Annual Review of Entomology*, 51, 45-66.

25. Thakore, Y. (2006). The biopesticide market for global agricultural use. *Industrial Biotechnology*, pp. 194-198.

26. Chitra Shanker and S. Uthamasamy(2005) Pest Management in Greengram (*Vigna radiata* L.) Grown Under Agroforestr, *Indian J. Agroforestry* Vol. 7 No. 2 : 49 - 54

27. Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. *Environment, Development and Sustainability*, 7(2), 229-252.

28. Mordue (Luntz) AJ, M. E. (2005). Azadirachtin, a natural product in insect control. *Comprehensive Molecular Science*.

29. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. *Nature*, 418(6898), 671-677.

30. Mancebo F, H. L. (2002). Biological activity of two neem (*Azadirachta indica* A. Juss., Meliaceae). *Crop Protection*.

31. Parida MM, U. C. (2002). Inhibitory potential of neem (*Azadirachta indica* A. Juss) leaves on. *J Ethnopharmacol.*

32. Gajalakshmi S, A. S. (2002). *Effect of the application of water hyacinth compost/vermicompost on the growth and.* *Bioresour Technol.*

33. Wang Y, M. T. (2000). *Effect of steroidal saponin from Yucca schidigera extract on ruminal.* *J Appl Microbiol.*

34. Morrissey JP, O. A. (1999). *Fungal resistance to plant antibiotics as a mechanism of pathogenesis.* *Microbiol Mol Biol Rev.*

35. Menn, J.J. (1996). *Biopesticides: Has their time come?* *Journal of Environment, Science and Health,* 31(3), 383-389.

36. H., S. (1995). *The neem tree, Azadirachta indica A. Juss and other meliaceous plants: source of unique natural products for integrated pest management, medicine, industry, and other purposes.* VCH, 6.

37. Gus-Mayer S, B. H.-P. (1994). *Purification, sequence.* *Plant Mol Biol.*

38. Schmutterer, H. (1990). *Properties and potential of natural pesticides from the neem tree, Azadirachta indica.* *Annual Review of Entomology,* 35(1), 271-297.

“ R.B. Singh (Nov 1987) *Trends and Prospects for Mungbean Production in South and Southeast Asia,* *International Development Research Centre (IDRC) of Canada (Tropical Vegetable Information Service),* 552-559,8.

PAPER NAME

final report for plag check (1).docx

WORD COUNT

5115 Words

CHARACTER COUNT

30153 Characters

PAGE COUNT

25 Pages

FILE SIZE

2.0MB

SUBMISSION DATE

May 22, 2024 2:38 PM GMT+5:30

REPORT DATE

May 22, 2024 2:39 PM GMT+5:30

● **19% Overall Similarity**

The combined total of all matches, including overlapping sources, for each database.

- 18% Internet database
- Crossref database
- 11% Submitted Works database
- 7% Publications database
- Crossref Posted Content database

● **Excluded from Similarity Report**

- Bibliographic material
- Cited material
- Quoted material
- Small Matches (Less than 10 words)

Summary

● 19% Overall Similarity

Top sources found in the following databases:

- 18% Internet database
- Crossref database
- 11% Submitted Works database
- 7% Publications database
- Crossref Posted Content database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	researchgate.net	4%
	Internet	
2	moam.info	4%
	Internet	
3	download.atlantis-press.com	2%
	Internet	
4	agrifoodmagazine.co.in	1%
	Internet	
5	glucose.sextreffnorge.com	1%
	Internet	
6	idl-bnc-idrc.dspacedirect.org	1%
	Internet	
7	pdfcoffee.com	<1%
	Internet	
8	krishi.icar.gov.in	<1%
	Internet	

[Sources overview](#)

9	Midlands State University on 2021-03-24 Submitted works	<1%
10	semanticscholar.org Internet	<1%
11	jcp.modares.ac.ir Internet	<1%
12	kisandarshan.in Internet	<1%
13	erepository.uonbi.ac.ke Internet	<1%
14	Jamil, Kaiser, Abjal Pasha Shaik, M. Mahboob, and D. Krishna. "Effect o... Crossref	<1%
15	University of Namibia on 2024-05-13 Submitted works	<1%
16	Vinod D. Parde, Hari C. Sharma, Manvendra S. Kachole. "Protease Inhib... Crossref	<1%
17	edoc.tips Internet	<1%

[Sources overview](#)

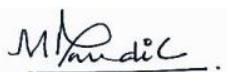
माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

2nd INTERNATIONAL STUDENT CONFERENCE ON MULTIDISCIPLINARY AND CURRENT TECHNICAL RESEARCH-2024

April 20-21, 2024

Ref. No.: MITS/ISCMCTR/2024/87


CERTIFICATE OF PARTICIPATION

This is to certify that **Subhash Thakur** of **Madhav Institute of Technology & Science, Gwalior, India** presented the paper in the 2nd International Student Conference on Multidisciplinary and Current Technical Research (ISCMCTR - 2024), held at **Madhav Institute of Technology & Science, Gwalior (M.P.)**, India, during 20 - 21 April, 2024.

Paper Title: Extracts of Different Plants as a Potential Bio Pesticide and its Effect Against Brown Marmorated Stink Bug

Author(s): Subhash Thakur (Madhav Institute of Technology & Science, Gwalior, India)*

Dr. Manjaree Pandit

Coordinator, ISCMCTR - 2024

ISCMCTR-2024

Collection work	C.W.
Experiment	Exp.
Research work (literature)	R.W.
Writing work	W.W.
Presentation work	P.W.

Day 1, Research work (literature) 22-27 Dec, wed.

- ① Analysing the need of biopesticide over chemical pesticide.
- ② Possibilities & potential of biopesticide
- ③ Choosing the affordable & economically viable plants for extraction process.
(Neem, garlic, tobacco) &

Plants (Neem, garlic, tobacco) &

Day ② Collection, Research 4 & 5 Jan, Friday

- ① ~~Visit to~~ Analysing different method of biopesticide extraction
- ② College visit.

D③ R.W.

9-10 Jan, Tue,

1. Paper reading (Bajwa, Ahmad 2012) on application of neem based pesticide.
2. Paper 2 (Alkamani) bioefficacy of turmeric & ginger as biopesticide

D.4 11.W.

13 Jan.

1. Presentation preparation for MPR first.
2. Revise all previous work.

D.5

15 Jan

1. Presentation day

D.6

18-19 Jan

1. College visit
2. Discussion with mentor on further development.

7 Exp.

24 Jan, Wed

1. Selected method preparation (water based extraction)

Exp.

28, Sun - 10 Feb sub

Visit to village

Collecting Neem, garlic, turmeric, & tobacco leaves

Exp.

11 Feb Mon

Preparation for MPR Presentation

Revise to previous work

D.10

15 Feb, Thus

- MPR to presentation
- Getting valuable feedback from mentor about adopted method (extraction, water soluble)

D.11 R.W.

20-24 Feb

1. Paper Reading (Kunnia Dewi, 2018) effect of tobacco pesticide on coffee bean protein.
2. P.R. (A.K. CHAKRAVARTHY) on garlic based pesticide

2. P. R. (A.R. CHAKRAVARTHY) on garlic based pesticide

D.12 Exp. 1 - 5 march

1 Extraction of essence of plants extracts

Neem & Tobacco - boiling with water

Turmeric - soaked in water & then filtered.

Garlic - crushed and squeezed

D.B ~~Go~~ 9-10 March
Visit to Kyishi Vigyan Kendra
(क्षिष्णविज्ञान केंद्र, ग्रन्थालय फॉर्मूलेशन)

D.Cq 15 march MBR 4 Presentation & topic clearance.

Dis C.W. 20 March - 25 March

Field visit

- Spraying of pesticide on flat beans & monitoring of changes occurs in plant.
- Plant chosen is affected by brown marmorated stink bug.

D16 C.W 1 April - 3 April

- Data collection and assembling
- Research paper writing
- Preparation of ppt

final analysis &
submitting the paper to April
14. Submission of

18 MPR presentation 15 april

9. Paper presentation at airport
Valuable feedback such as to include cost analysis
and ~~get~~ ^{to} get best p.o.v.

D.20 25 April

- Mid term evaluation
- Report submission
- PPR presentation

26 April

Spray on flower plants without diluting

27 April

thick spots are formed on surface of leaves
Ants and butterfly are not observed

28 April

26 April developed cracked
STV no ants & butterfly

29 April

Bees were observed

30 April

Spray on money plant
three separate concentration dosage were prepared
2, 5 & 10 ml & untreated plant also chosen
Bugs were counted Rand. in 10 plants for each

31 May

No. of bugs were observed in each zone

05 May

No. of bugs - 1

It is found that 10 ml con. is optimum.

10 May

Data is tabulated is graph been plotted
Literature work for comparison with chemical

11 May

Cost analysis is done based on market price

12 May

Report & PPT work