

A Project Report
On
**“Experimental Realization of Universal Control Scheme for Asymmetrical
Reduced Device Count Multilevel Inverter”**
In partial fulfillment for the award of the degree
Of
BACHELOR OF TECHNOLOGY (B. TECH)
IN
ELECTRICAL ENGINEERING

Submitted By:

KUSHAGRA SHARMA (0901EE191062)

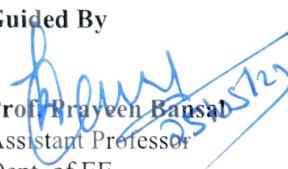
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR, M.P. -474005

**(A Govt. Aided UGC Autonomous & NAAC Accredited Institute, Affiliated to RGPV
Bhopal)**

MAY 2023

CANDIDATE'S DECLARATION

I hereby declare that the project titled "**Experimental Realization of Universal Control Scheme for Asymmetrical Reduced Device Count Multilevel Inverter**" submitted for the award of **Bachelor of Technology** degree in **Electrical Engineering** is my original work and the project has not been submitted elsewhere for the award of any other degree, diploma, fellowship, or any other similar titles.



Kushagra Sharma (0901EE191062)

Place: Gwalior

Date: 25 May, 2023

This is to certify that the above statement made by the candidate is correct to my knowledge and belief.

Guided By

Prof. Praveen Bansal
Assistant Professor
Dept. of EE
MITS, Gwalior

Approved By

Dr. Sulochana Wadhwan^{25/5/2023}
Prof. & Head, EED
MITS, Gwalior

Prof. S. H. Wadhwan
Elec. Engg. Deptt.
MITS, Gwalior-05

CANDIDATE'S DECLARATION

I hereby declare that the project titled "**Experimental Realization of Universal Control Scheme for Asymmetrical Reduced Device Count Multilevel Inverter**" submitted for the award of **Bachelor of Technology** degree in **Electrical Engineering** is my original work and the project has not been submitted elsewhere for the award of any other degree, diploma, fellowship, or any other similar titles.

Kushagra Sharma (0901EE191062)

Place: Gwalior

Date: 25 May, 2023

This is to certify that the above statement made by the candidate is correct to my knowledge and belief.

Guided By

Prof. Praveen Bansal

Assistant Professor
Dept. of EE
MITS, Gwalior

Approved By

Dr. Sulochana Wadhwani

Prof. & Head, EED
MITS, Gwalior

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor. Prof. Praveen Bansal for his guidance, encouragement, and support throughout the course of this work. It was an invaluable learning experience for me to be one of their students. From them I have gained not only extensive knowledge, but also a careful research attitude.

I am also thankful to my colleagues for his cooperation with me in facilitating the infrastructure and lab facility during my work.

I am highly indebted to Dr R.K. Pandit, Director M.I.T.S., Gwalior (M.P.) for the facilities provided to accomplish this internship.

I would like to thank Dr S. Wadhwani, Head Department of Electrical Engineering, M.I.T.S., Gwalior (M.P.) for his constructive criticism throughout my internship.

I would like to thank Mr. Vikram Rajput, T&P Coordinator MITS, Gwalior & Prof. Praveen Bansal, Internship Coordinators, and Department of Electrical Engineering for their support and advice to get and complete internship in above said organization. I am extremely grateful to my department staff members and friends who helped me in successful completion of this internship.

Date: 25 MAY, 2023

Kushagra Sharma

Place: Gwalior

0901EE191062

\

ABSTRACT

This paper presents a universal control pulse width modulation (PWM) technique for a single-phase reduced device count Multilevel Inverter. The basic module can produce fifteen level outputs with four dc sources and ten switches. The proposed topology features lower total standing voltage, lower rating switches, and an inherent capacity for producing negative voltage levels.

Harmonics and total harmonic distortion are drawbacks of conventional inverters (THD). This paper uses MATLAB simulation to study the analysis of THD and harmonics. The universal control scheme is tested experimentally using STM32F4 discovery board and a proposed MLI configuration has been tested using various PWM techniques.

Through rigorous experimental testing of the circuit in the lab, the reliability of the simulation results is confirmed.

TABLE OF CONTENTS

Declaration	I
Acknowledgement	II
Certificate	III
Abstract	IV
Table of Contents	
List of Figures	VII
List of Tables	VIII
Abbreviations	IX
1. Chapter 1 : Introduction	1
1.1. Objective	2
1.2. Problem Formulation	2
1.3. Solution Methodologies	3
1.4. Pulse Width Modulation	3
1.4.1 Terminologies	
2. Chapter 2	5
2.1 Inverter	5
2.2 Multi-Level Inverter	6
2.3 Advantages of Multi-Level Inverters	6
2.4 Multi-Level Inverter Topologies	7
2.4.1 Diode Clamped Inverter	7
2.4.2 Flying Capacitor MLI	8
2.4.3 Cascaded H-Bridge MLI	9
2.5 Proposed Topology	10
2.6 Voltage Rating Of Switches	14

3. Chapter 3	15
3.1 Universal Control Scheme	15
3.2 Control and Modulation Techniques in Proposed Topolgy	18
3.2.1 Phase Disposition PWM	18
3.2.2 Phase Opposition Disposition PWM	19
3.3.3 Alternate Phase Opposition Disposition PWM	19
3.3.4 Variable Frequency PWM	20
3.3.5 Inverted Sinusoidal Carrier PWM	20
3.3.6 Variable Frequency Inverse Sinusoidal Carrier PWM	21
3.3 Simulation	22
4. Chapter 4 Results & Discussion	24
4.1 Simulation Results	24
4.2 Experimental Results & Discussion	29
4.3 Conclusion	32
References	33
Appendix	
1. Plagiarism check certificate	
2. Turnitin plag report	
3. Certificate	

LIST OF FIGURES

Figures	Page No.
1. Pulse Width Modulation	4
2. H-Bridge Inverter	5
3. Diode-Clamped Inverter	7
4. Flying-Capacitor Three MLI	8
5. Cascaded H-bridge MLI	9
6. Fifteen Level MLI	10
7. Different switching modes	12
8. Block Diagram Of Universal Control Scheme	17
9. PDPWM	18
10. PODPWM	19
11. APODPWM	19
12. VFPWM	20
13. ISCPWM	21
14. VISCPWM	21
15. Universal Control Technique Triggering Circuit(Simulink)	22
16. Fifteen Level Triggering	22
17. Output Voltage Waveform Of Fifteen Level	24
18. FFT Analysis Of Voltage Signal	25
19. THD in PDPWM	25
20. THD in PODPWM	26
21. THD in APODPWM	26
22. THD in VFPWM	27
23. THD in ISCPWM	27
24. THD in VFISCPWM	27
25. Experimental Realization Of Universal Control Technique	30
26. Experimental Output Voltage At Modulation Index 1	30
27. Experimental Output Voltage At Modulation Index 0.9	31
28. Experimental Output Voltage At Modulation Index 0.8	31

List of Table

Table No.

1. Switching States	11
2. THD Comparison Of The Proposed Topology Using Various PWM Techniques under Varying Modulation Indexes.	28
3. Comparison Of Multiple Topologies	28

Abbreviations

1. MLI – Multilevel Inverter
2. PWM- Pulse Width Modulation
3. THD- Total Harmonic Distortion
4. RDC-Reduced Device Count
5. TSV-Total Standing Voltage

CHAPTER-I

INTRODUCTION

An inverter is a power electronic instrument that transforms dc power into ac power at a specified output voltage and frequency. Two level inverters are inverters that produce an output voltage or current with two distinct values of voltage levels.

The harmonic reduction of an inverter output current in a typical two-level inverter arrangement is done mainly by increasing the switching frequency. However, because of the higher switching losses and the amount of dc-bus voltage in high power applications, the power device's switching frequency must be limited below 1 KHz. On the other hand, the electromagnetic disturbance and motor winding stress are caused by the extremely high dv/dt produced with high dc-link voltage. Multi-level inverters are better from the perspective of distortion reduction and high dc-link voltage level.

The three-level inverter introduced by Nabae et al. is where the term "multilevel" first appears. The output voltages have more steps when the inverter's level count is increased, creating a staircase waveform with less harmonic distortion. Unfortunately, a large number of levels makes the control complex and causes issues with voltage imbalance.

Multilevel inverters have been widely used in high power applications due to their ability to provide high quality output waveforms with low harmonic distortion. The Reduced Device Topology-MLI is a topology that addresses these issues by using a reduced number of switching devices. The RDT-MLI topology provides several advantages over traditional multilevel inverters,

including reduced cost, low switching losses, and the ability to easily expand the system to achieve higher voltage levels.

1.1 Objective

- a) Simulating and Analyzing the Circuit: The aim is to study a nine-level multilevel inverter circuit's behavior under different operating situations and to model the circuit using Simulink blocks to examine the output waveforms.
- b) Performance Evaluation: The goal is to assess the output waveform quality and total harmonic distortion (THD) of the nine-level multilevel inverter. This would entail examining the simulation results and contrasting them with hardware results.
- c) Design Optimization: The purpose is to optimize the nine-level multilevel inverter's architecture in order to accomplish objectives, including minimizing THD, reducing switching losses, or increasing efficiency. This can entail modifying variables like the modulation index and switching frequency and then assessing how the changes affect the system's performance.
- d) Comparative Analysis: The goal is to evaluate the nine-level multilevel inverter's performance in comparison to other multilevel inverter topologies. This could entail simulating and examining several topologies under comparable operating settings and contrasting their benefits, drawbacks, and performance traits.

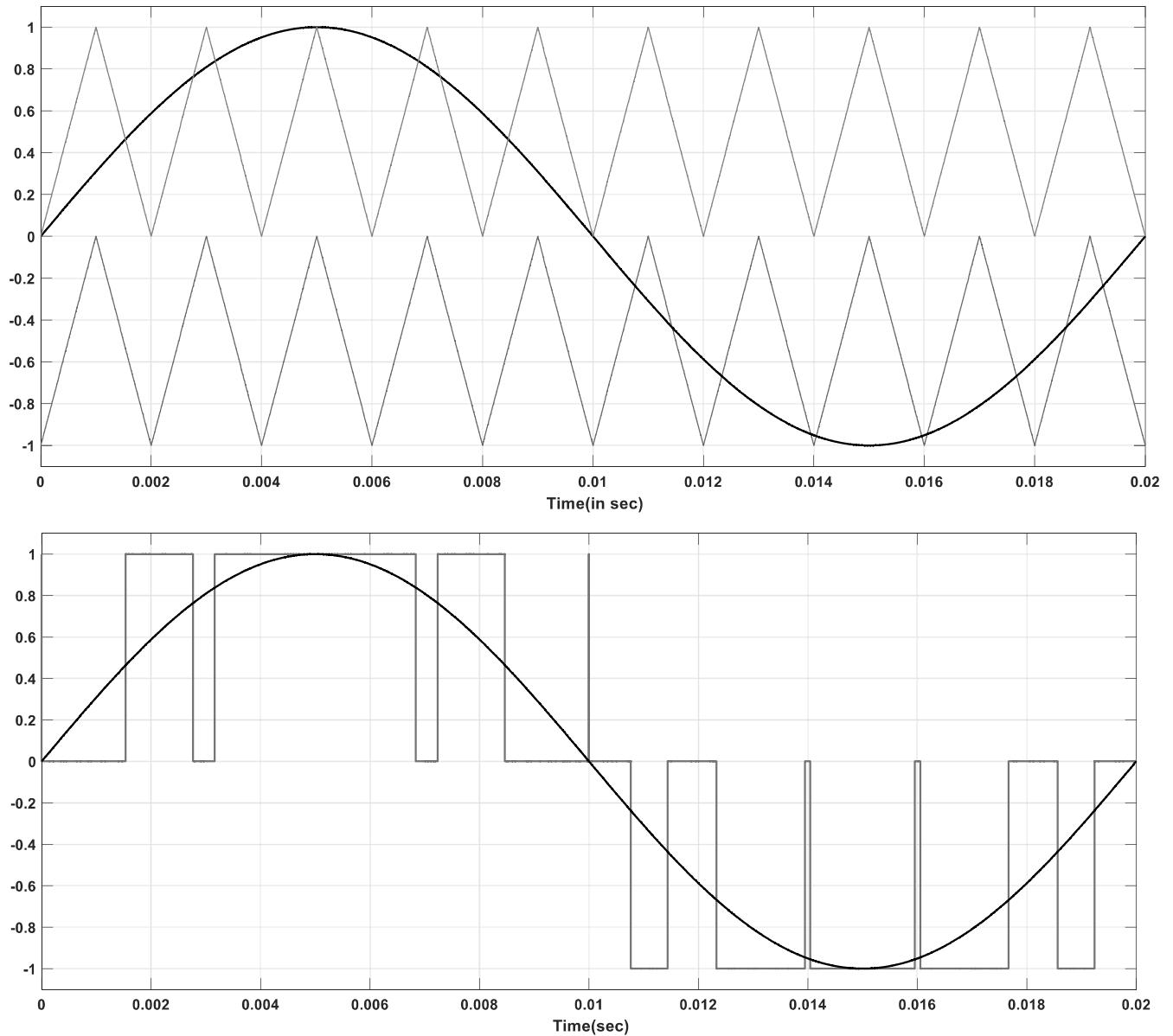
1.2 Problem Formulation

1. In high-power and high-voltage applicants low-level (for eg. three, five, seven) inverter have some limitations in operating at high frequency.
2. Total harmonic distortion (THD) is a significant component of low-level inverters.

3. Low-level inverter doesn't provide good quality of output waveforms.

1.3 Solution Methodologies

Implementation of a 15-level inverter to mitigate the drawbacks of low-level inverter use:


1. Increasing the level of inverter will make the resultant waveform move toward the sinusoidal waveform. Increasing the waveform quality.
2. With minimal overall harmonic distortion and no need for a transformer, the proposed Topology of the multilevel inverter enables high voltage levels.
3. The proposed topology employs less number of DC voltage source to produce high level voltages and less number of switching devices which also reduces the switching losses.

1.4 Pulse Width Modulation

Power-electronic switches used in inverters allow for various switching operations to be performed within the inverter to optimize the harmonics and manage the output voltage. A circuit's average output voltage can be altered by varying the pulse width. The name of this method is pulse width modulation.

PWM consists of reference wave (sinusoidal signal) and a carrier wave (triangular signal) and compare them using comparator and producing triggering signals for power-electronics switches. The carrier signals present freedom in the following parameters: frequency, amplitude, phase of each carrier, and offset between the carriers.

In general, an inverter with n_{level} number of levels (including zero level) in the phase voltage, would require a set of $n_{level}-1$ number of carrier signals.

Fig.1 Pulse Width Modulation

CHAPTER II

2.1 INVERTER

The term "inverter" is frequently used to describe a DC to AC converter. This chapter uses the H-bridge inverter or topology as an example. Fig. 2 illustrates a DC source as a battery with voltage VDC. The DC link voltage is a typical term for this output.

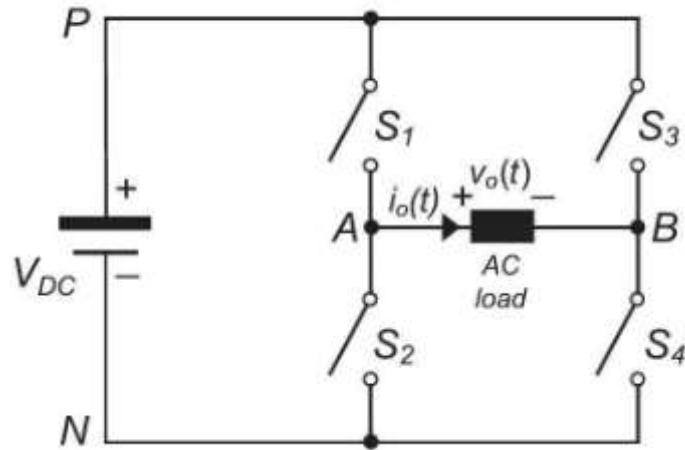


Fig.2 H-Bridge Inverter

The source's higher potential terminal is denoted by the letter "P," and its lower potential terminal by the letter "N." Since the load can be entirely resistive, capacitive, or inductive in nature, it is depicted as a black box. The load requires alternating current for its conduction. When the potential at A is higher than at B, then V_o is regarded as positive, otherwise it is negative. Similarly, when the direction of current is from A to B, then $i_o(t)$ is considered positive, otherwise it is negative. The circuit also has four switching devices S1, S2, S3 and S4. By turning 'ON' or 'OFF' particular switches we can obtain our desired output voltages.

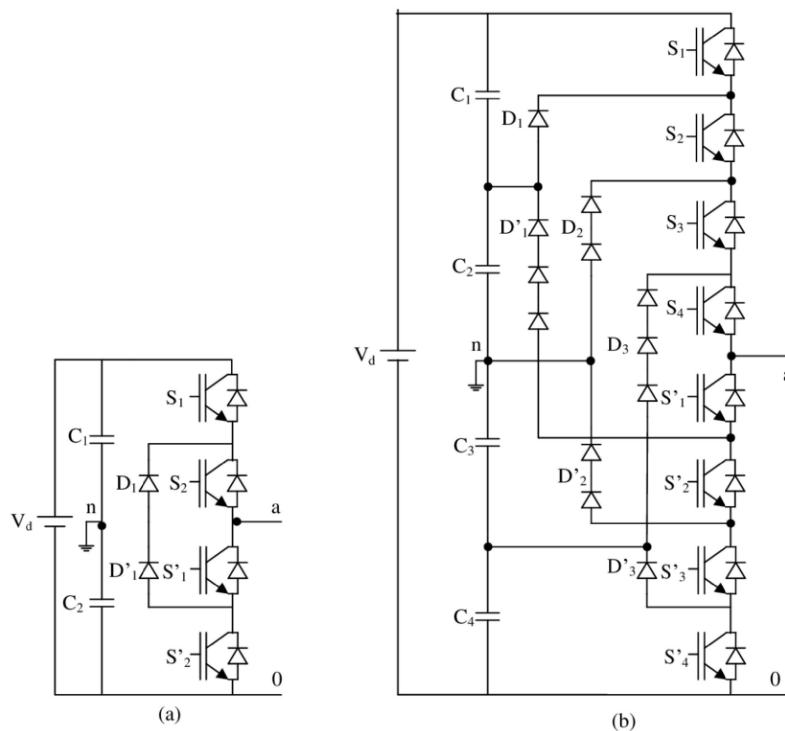
2.2 Multi-Level Inverters

A multi-level inverter's output waveform has more than two levels. The bulk of industrial applications have started to demand more powerful equipment in recent years. For a number of medium voltage utility and motor driving applications, megawatt power levels and medium voltage are required.

A medium voltage grid cannot be directly linked to a power semiconductor switch. As a result, a multiple power converter structure has been created for use in high power and medium voltage scenarios.

In addition to achieving high power ratings, a multilevel converter also makes it possible to employ renewable energy sources for high-power applications, including photovoltaic cells, wind turbines, and fuel cells.

2.3 Advantages of Multi-Level Inverters


1. Total harmonic distortion (THD) reduces
2. High Voltage level obtained
3. Staircase waveform quality
4. Operates at both fundamental and high switching frequency PWM
5. Low switching losses
6. High power quality
7. Electromagnetic interference reduces
8. They generate less CM, or common-mode voltage. Furthermore, CM voltages can be eliminated using complex modulation techniques.

2.4 Multilevel Inverter Topologies

2.4.1 Diode Clamped Inverter

Diode-clamped topology, also referred to as NPC (Neutral Point Clamped Invert-er) topology, first drew attention when Nabae et al. demonstrated the use of an NPC inverter alongside experimentation utilizing a pulse-width modulation technique in the 1980s [3].

The clamping diode is used for the Diode-Clamped Multilevel Inverter to transmit a minimal quantity of voltage [4]. n^2 is the total number of components needed for n -level voltage production, which includes $2*(n-1)$ IGBT devices linked in series, $(n-1)*(n-2)$ clamping diodes, $(n-1)$ dc link capacitors to split the dc link into various voltage levels, and one dc voltage source [14]. Diode clamped multilevel inverters have a significant disadvantage in that their maximum output voltage is only half of the input dc voltage, but they also have high efficiency due to the fundamental frequency that is used in all switching devices.

Fig.3 Diode-Clamped MLI

2.4.2 Flying-Capacitor MLI

This inverter's configuration structure is similar to that of the preceding one, with the exception that here, capacitors are employed to limit voltage rather than diodes [5]. In order to limit voltage, n level flying capacitor inverters combine $(n-1) * (n-2)/2$ clamping capacitors and $(n-1)$ DC link capacitors with $(2n-2)$ switching components.

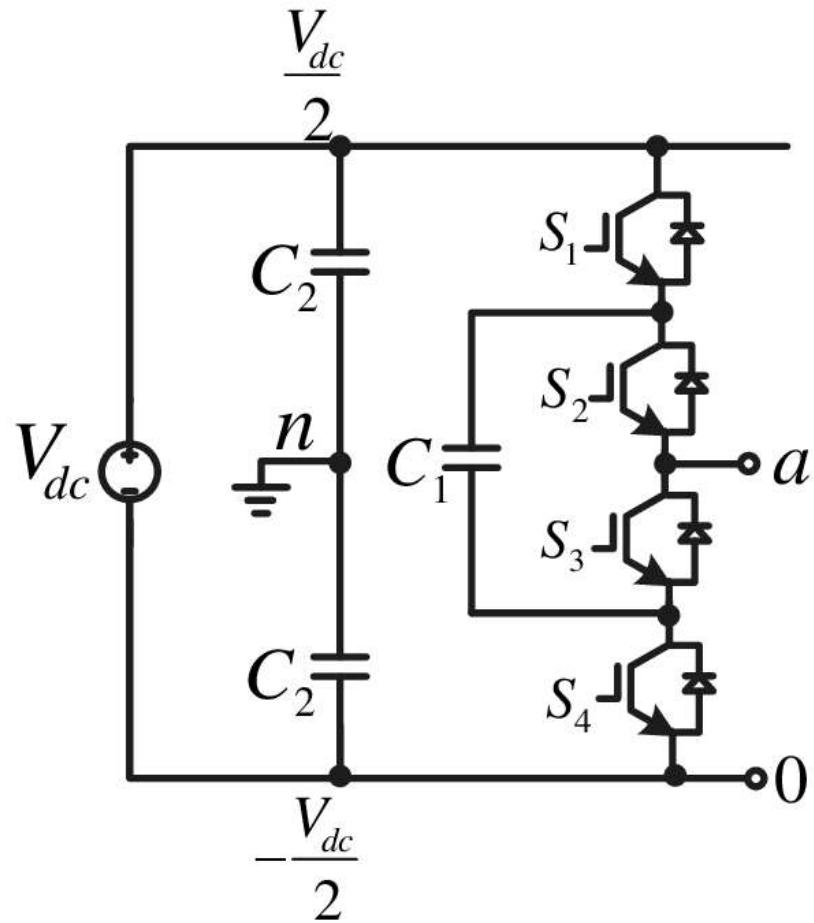
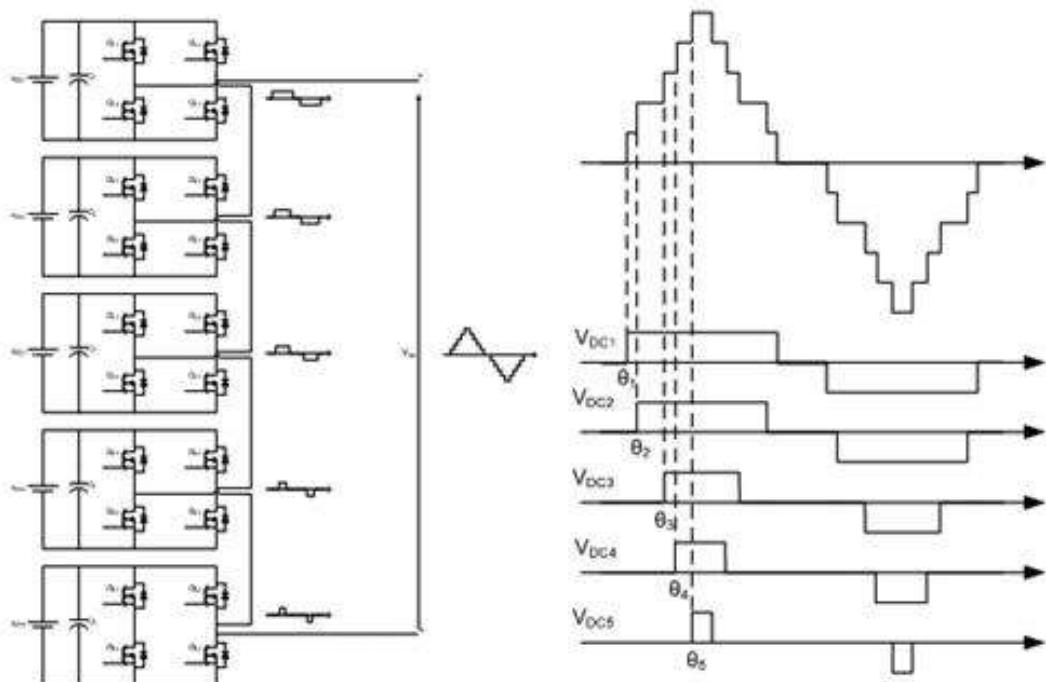


Fig.4 Flying-Capacitor Three-Level MLI


2.4.3 Cascaded H-bridge Multi-level Inverter

The cascaded H-bridged multi-level inverter (CHBMLI) is one of the popular forms of multi-level inverters utilized in high power moderate-voltage circuits.

The construction of the cascade H-bridge is the least complicated of the three multilevel inverter topologies since it uses fewer parts. There are several topologies for cascaded H-bridge multi-level inverters with regard to the input DC voltage source. The first kind of CHB-MLI has equal DC voltage supplies; this form of inverter generates high ac voltages by combining several equal units of the power supply.

A sine wave replica staircase waveform is created using a multilevel inverter. The use of multicarrier PWM techniques further enhances it.

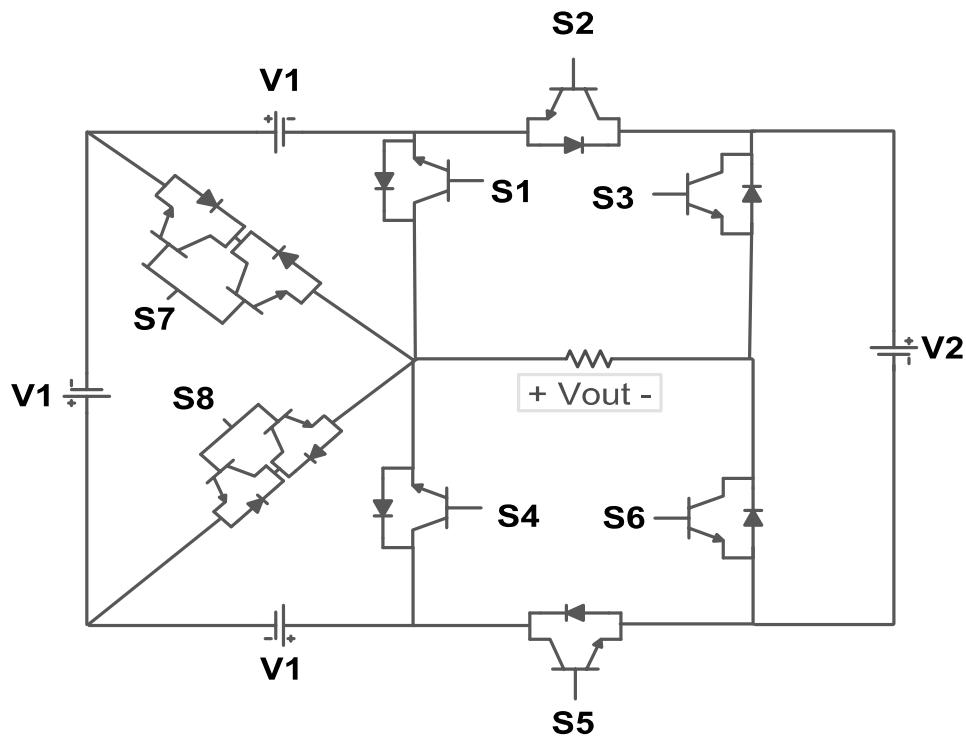

A number of n H-bridge inverter cells make up the cascade H-bridge multilevel inverter. Four primary switches and one distinct dc voltage source are employed in each cell.

Fig.5 Cascaded H-bridge MLI

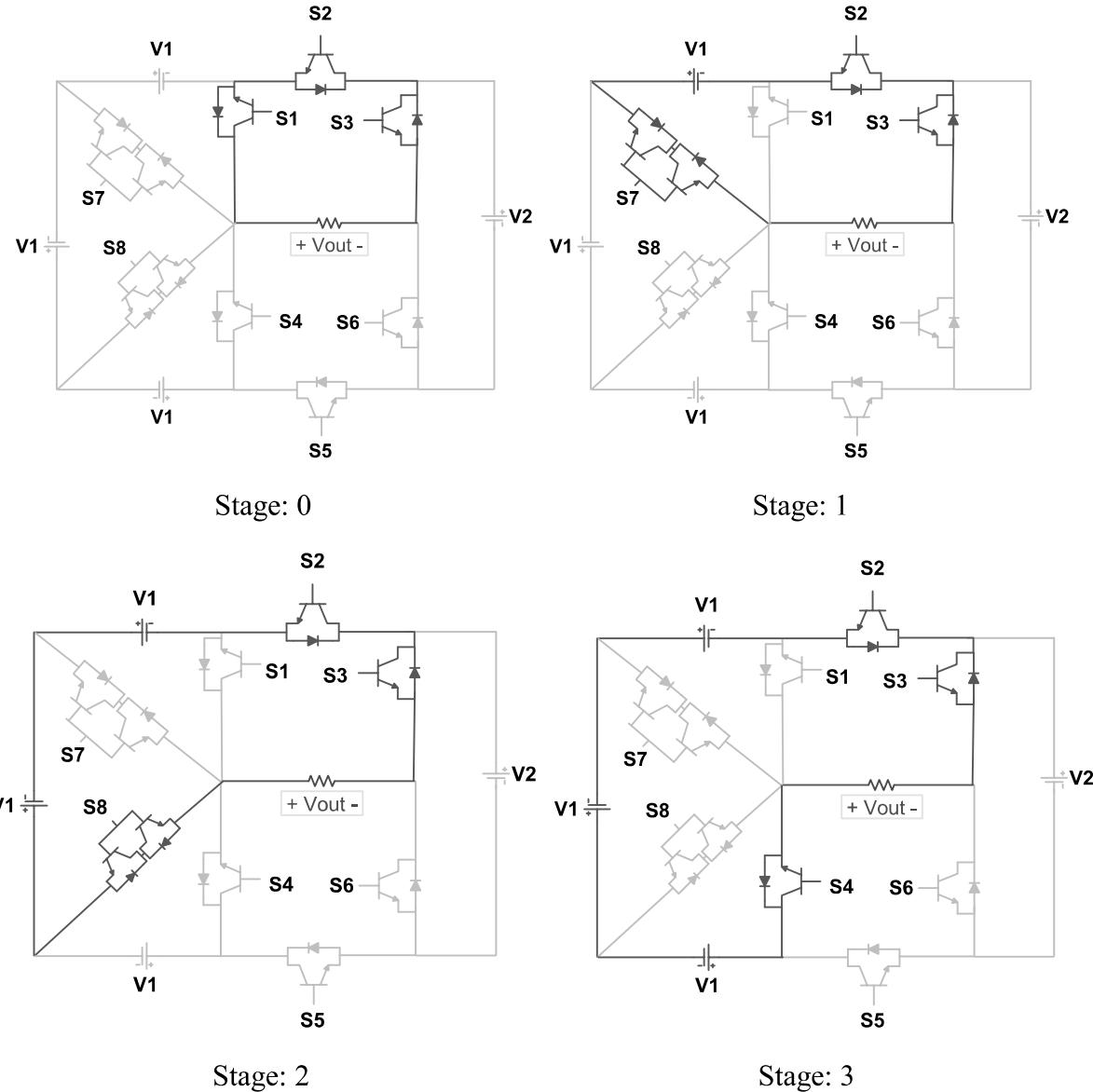
2.4 Proposed Topology

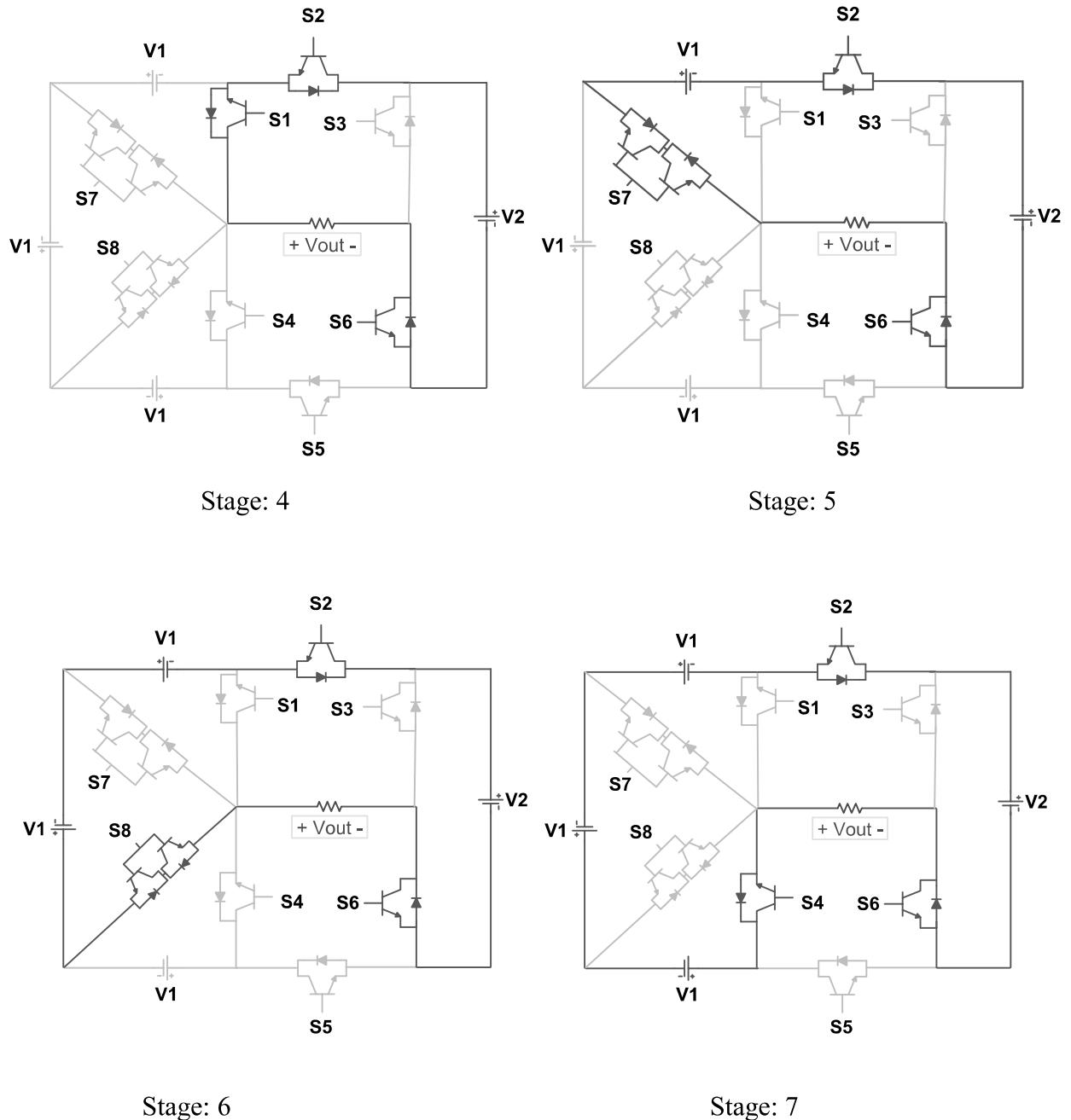
Fig. shows the novel multilevel inverter topology for a 15-level Asymmetrical Multilevel inverter that can reduces the count of switching devices. This is a full-bridge DC-AC converter which is having DC voltage source of different magnitude. In Fig.1, For this 15-Level inverter Four DC voltage in which three are of same magnitude and one of different voltage value are required along with 10 IGBTs switches. This topology arrangement of different magnitude voltage sources along with a full-bridge converter gives the 15-level output voltage.

Fig.6 Fifteen Level MLI

The basic multilevel unit of the proposed topology is shown in Fig.1 it is a 15-level inverter. It has four power sources and eight switches. Six of the eight switches have a single orientation, and two are bidirectional. Using an IGBTs and an anti-parallel diode a switch is made. It can prevent one-way current. Using two unidirectional switches we can construct an Bidirectional switch that allow current to flow in both directions.

Table 1 Switching States under Positive and Negative half cycles


For Positive Cycle:


State	S1	S2	S3	S4	S5	S6	S7	S8	Voutput
0	✓	✓	✓						0
1		✓	✓				✓		V1
2		✓	✓					✓	2V1
3		✓	✓	✓					3V1
4	✓	✓				✓			V2
5		✓				✓	✓		V1+V2
6		✓				✓		✓	2V1+V2
7		✓		✓		✓			3V1+V2

For Negative Cycle:

State	S1	S2	S3	S4	S5	S6	S7	S8	Voutput
0				✓	✓	✓			0
1					✓	✓		✓	-V1
2					✓	✓	✓		-2V1
3	✓				✓	✓			-3V1
4			✓	✓	✓				-V2
5			✓		✓			✓	-(V1+V2)
6			✓		✓		✓		-(2V1+V2)
7	✓		✓		✓				-(3V1+V2)

From Table 1.1, switches S3 and S6 operate in a manner opposite to each other, meaning that if one switch is on for a certain voltage level, the other must be off. To prevent the dc supply from shorting, this is essential. Switches S2 and S5 operate in a pair that complements likewise. Fig. 2 demonstrates the different levels obtained using different switching modes.

Fig.7 Different switching modes

2.5 Voltage Rating Of Switches

The rating of the switches has an indirect impact on the inverter's price. The highest voltage that the switch can block determines the switch's rating. TSV is the collective name for all of the switches' blocking voltages. The maximum blocking voltages for various switches in the proposed basic multi-level unit are listed below:

$$E_{s3}=E_{s6}=V_2; \quad (1)$$

$$E_{s2}=E_{s5}=(V_2+3V_1); \quad (2)$$

$$E_{s1}=E_{s4}=3V_1; \quad (3)$$

$$E_{s7}=E_{s8}=4V_1; \quad (4)$$

$$TSV=2\times(V_2+(V_2+3V_1)+3V_1+4V_1)=4(V_2+5V_1) \quad (5)$$

It is obvious from the expression above that the TSV value is dependent upon the parameters of the DC voltage sources and is simple to compute. For instance, dc source values in the 15-Level structure are in the ratio $V_2:V_1 = 4:1$. Consequently, in this instance, the TSV will be

$$TSV=2\times(V_2+(V_2+3V_1)+3V_1+4V_1)=4(V_2+5V_1)=36V_1 \quad (6)$$

The term $TSV_{p.u.}$ refers to the ratio of TSV to maximum output voltage. ($TSV_{p.u.}$) will be

$$TSV_{p.u.} = \frac{36}{7} = 5.14 \quad (7)$$

CHAPTER-III

3.1 Universal Control Scheme

The proposed control strategy is described in this section. It is designed in such a way that it may be used with any multilevel inverter topologies. Let N level be the total number of levels in the phase voltage for the provided inverter. If N level > 3 , a voltage source inverter can operate at several levels. Level 0 is significant; hence N level is regarded as unusual. The N level waveform's number of positive levels will also be:

$$N = (N_{\text{level}} - 1)/2$$

A sinusoidal waveform of amplitude A_{ref} and frequency f_{ref} constitutes the modulating signal $a_{\text{ref}}(t)$ [4]. For sine PWM and low-frequency schemes, there needs to be triangular, constant, $2N$ carrier signals. The frequency of these carriers is f_{car} , and A_{car} is their peak-to-peak amplitude. Carrier signals that are higher than the zero level are known as $a_{\text{car},j}^+(t)$ and those that fall below the zero level are known as $a_{\text{car},j}^-(t)$, ($j = 1$ to N). The zero reference is positioned in the middle of the continuous bands that the carrier signals occupy.

Accordingly, the following quantities can be defined:

$$\text{Index of frequency modulation, } P = A_{\text{car}} / (A_{\text{ref}})$$

"P" determines the output waveform's harmonic profile as well as the power switches' switching frequency.

$$\text{Index of amplitude modulation, } M = A_{\text{ref}} / (N A_{\text{car}})$$

The output waveform's peak value and the number of levels are determined by the value of "M". Each carrier is compared against the modulating signal at every instant. For each comparison, the result is either "1" if the signal that is being modulated is more than the carrier, or "0" if it is not. This applies to all carrier signals above the zero reference. For each comparison, the result is either "0" if the modulating signal is greater than the carrier or "-1" if the carrier signal is less than the zero reference. That is.

$$a_{out,j}^+(t) = 1, \quad \text{for } a_{ref} \geq a_{car,j}^+(t) \\ = 0, \quad \text{otherwise}$$

$$a_{out,j}^-(t) = 0, \quad \text{for } a_{ref} \geq a_{car,j}^-(t) \\ = -1, \text{ for otherwise}$$

The results so obtained are combined to create an "Aggregated signal" that is designated as $a_{agg}(t)$.

That is,

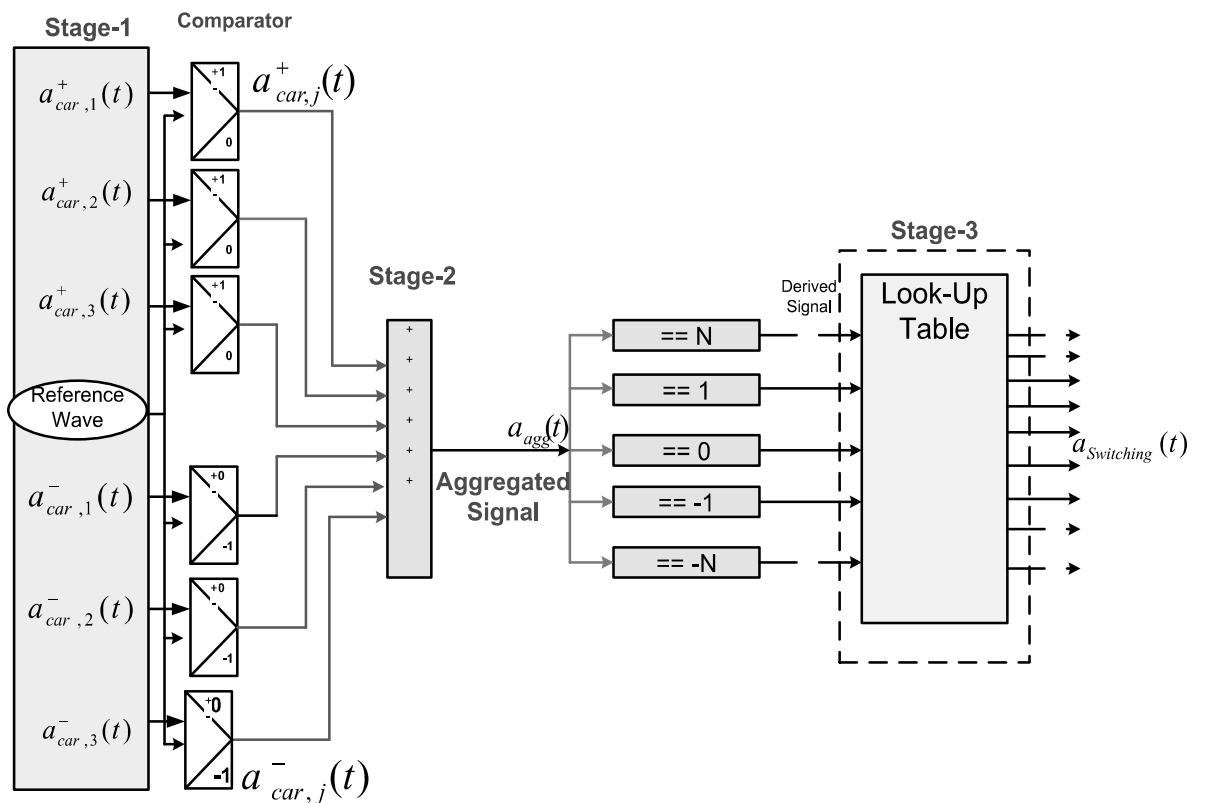
$$a_{agg}(t) = \sum_{j=1}^N (a_{out,j}^+(t) + a_{out,j}^-(t))$$

It should be observed that the wave shape of $a_{agg}(t)$ gains the same property as the anticipated output voltage. With a certain topology, power electronic switches require real-world driving signals, which requires the use of logical components and a look-up table to be generated from $a_{agg}(t)$. Using Boolean operations,

$a_{d,t}(t)$ are derived from $a_{agg}(t)$ using following criteria:

$$a_{d,t}(t) = 1, \text{ if } a_{agg}(t) = j$$

=

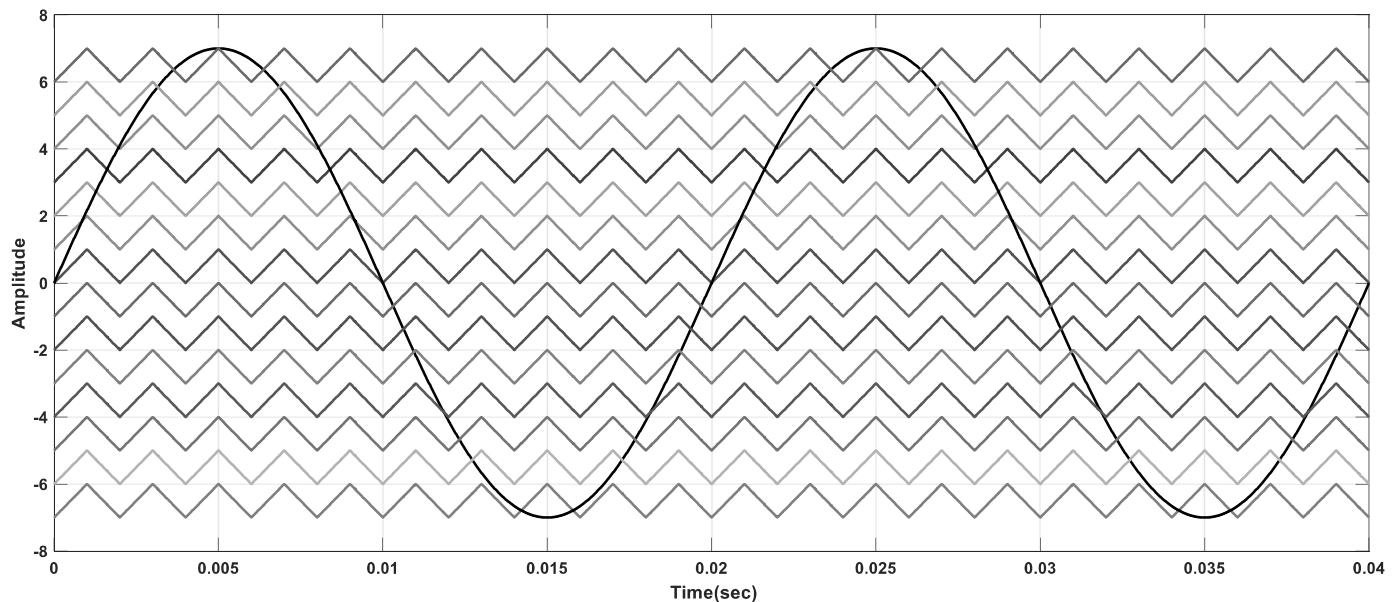

0, otherwise; where, $j = -N$ to $+N$

As a result, a total of N-level derived signals will be produced, each of which will be used to operate the switches that must remain ON at the voltage level indicated by the output waveform. In order to acquire the switching function $a_{switching}(t)$ for a certain switch, the necessary derived signals would be sent into an OR gate. The block diagram is shown in fig.3 . The mathematical formulation of the switching function is

$$a_{switching}(t) = \overline{\prod a_d(t)}$$

Where,

$$\overline{a_d(t)} = 1 - a_d(t)$$


Fig.8 Block Diagram Of Universal Control Scheme

3.2 Control and Modulation Techniques in Proposed Topology:

For MLIs, some modulation techniques have been presented down in the literature. PWM techniques use many levels of carriers offset between the carriers. Moreover, the reference wave (modulating signal) allows for the injection of zero sequence signals as well as freedom in frequency, amplitude, and phase angle. As a result, numerous multilevel carriers-based PWM techniques can be obtained by using these combinations. Typically, $n - 1$ carrier signals are needed for an inverter with n levels in the phase voltage. Multi-carrier PWM techniques are as follows:

3.2.1 Phase Disposition PWM

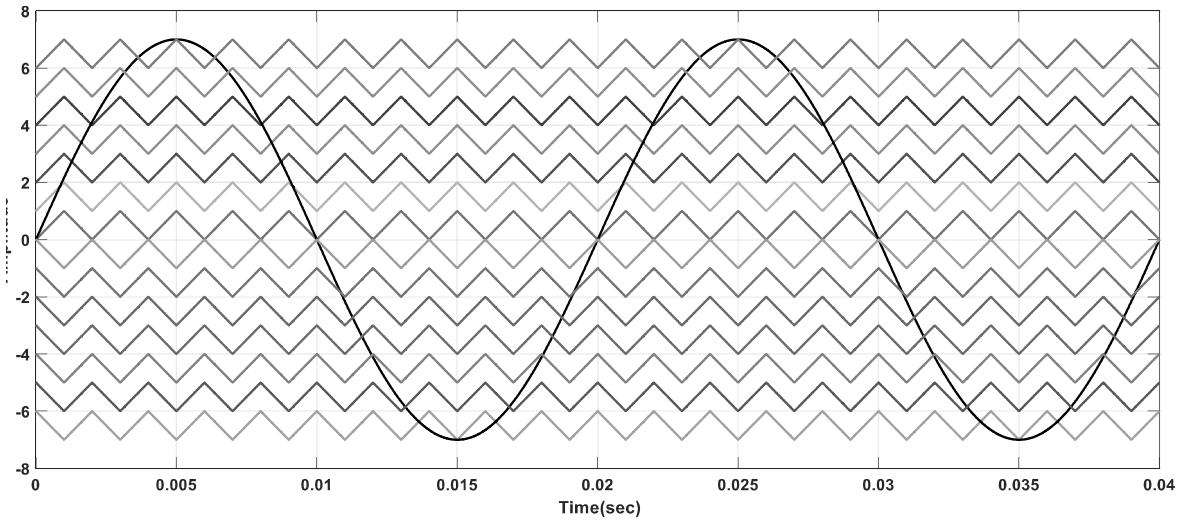

The full ($N-1$) carrier is in phase and has the same amplitude and frequency in PD PWM. Fourteen carrier waves are used in this proposed topology in comparison to a single sine reference wave. When employing MLI, N -voltage levels are represented by $N-1$ carrier signals. The PD PWM method is depicted in Fig.

Fig.9. PDPWM

3.2.2 Phase Opposition Disposition PWM (PDPWM)

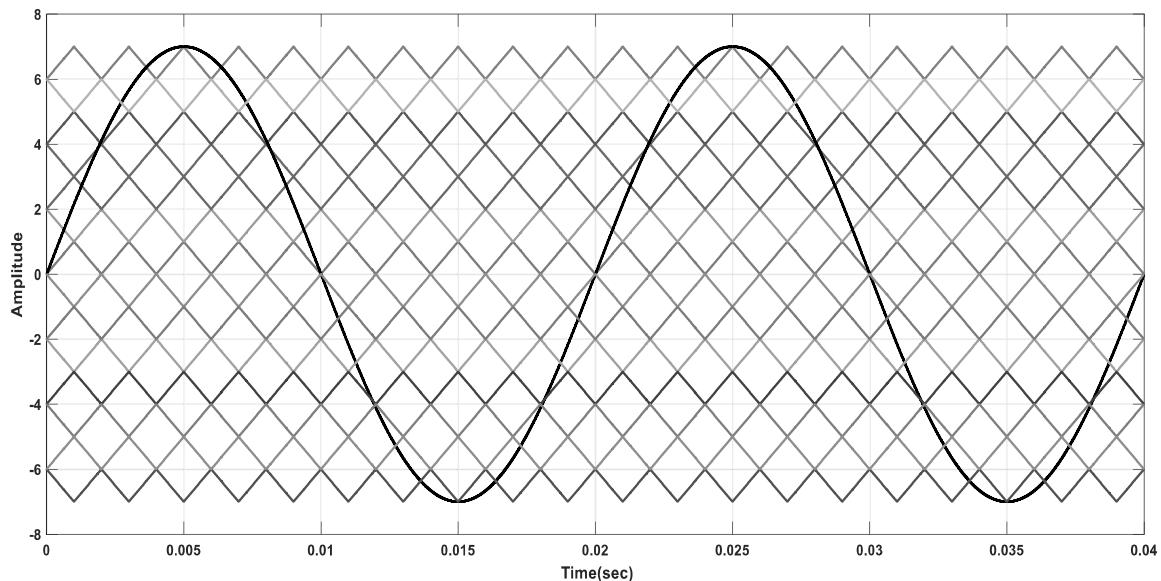

The carrier signal in this system are phase-locked to each other both below and above the zero reference, but as shown in Fig.10 , the carrier signals below and above the zero reference are phase opposition with each other.

Fig.10. PODPWM

3.3.3 Alternate Phase Opposition Disposition (AOPDPWM) PWM

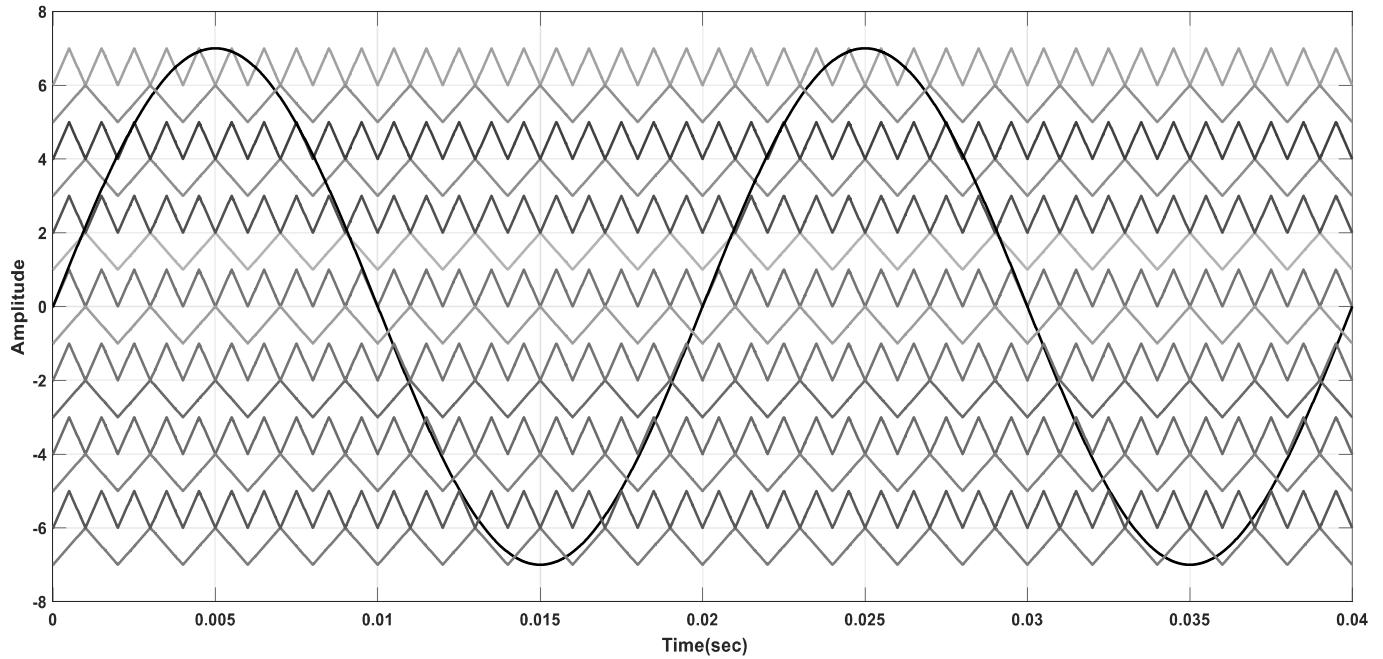

In this technique, the carrier signals are alternately phase-displaced by 180 degrees from each other, as shown in Fig.11.

Fig.11. AOPDPWM

3.3.4 Variable Frequency PWM(VFPWM)

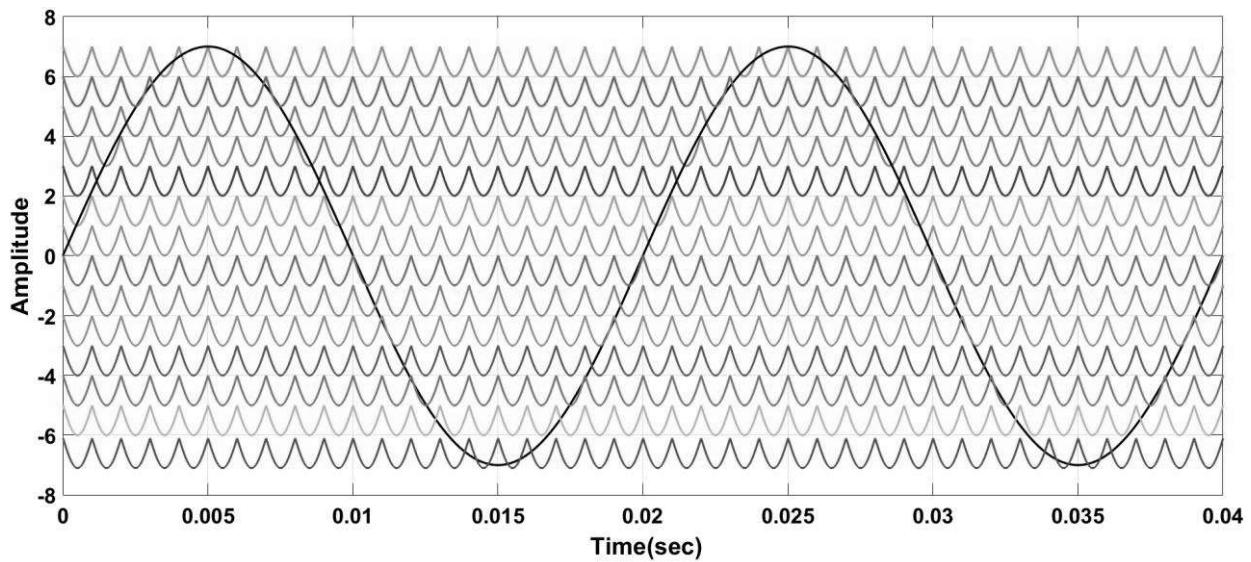

All of the carrier waves in variable frequency pulse width modulation have different frequencies with respect to one another, as demonstrated in Fig.12.

Fig.12 VFPWM

3.3.5 Inverted Sinusoidal Carrier PWM

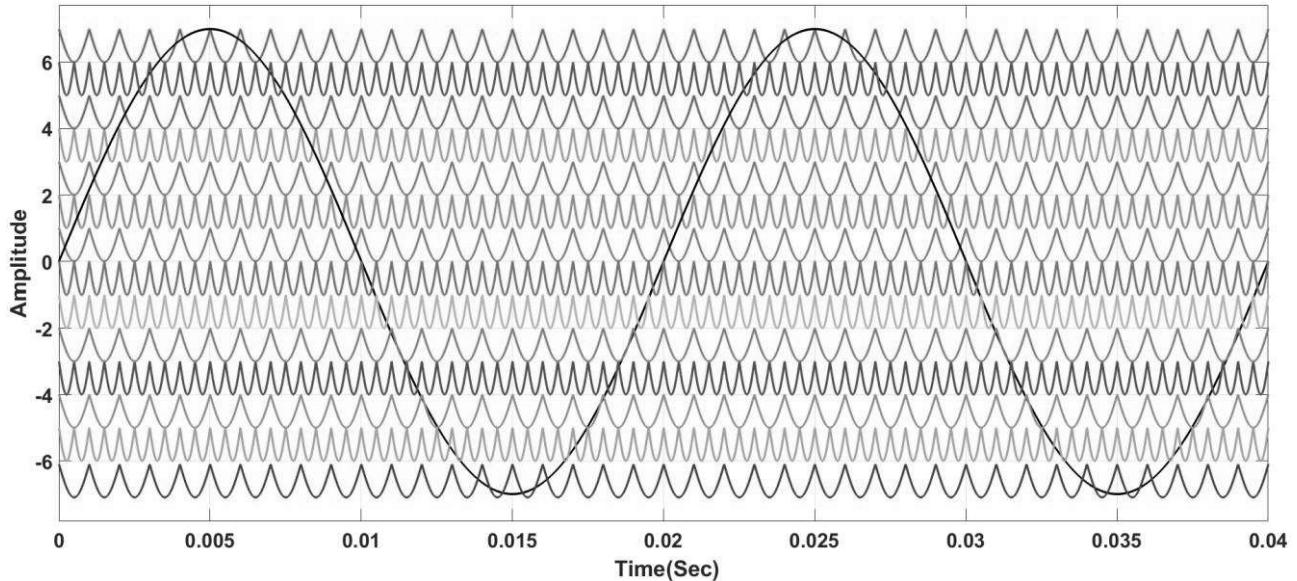
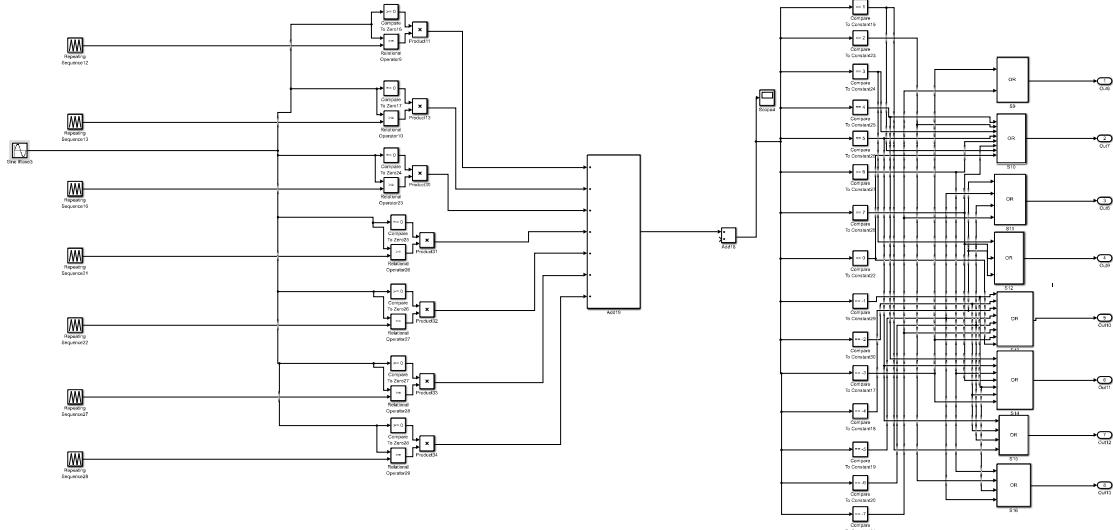

In this technique, a sine wave is used as a carrier wave. The inverted sine carrier PWM (ISCPWM) technique uses an inverted sine carrier with a high frequency as the carrier signal and a sine wave as the reference signal. Low harmonic distortion is produced by the combination of reference and carrier signals with varying modulation indexes [16].

Fig.13. ISCPWM


3.4 Variable Frequency Inverse Sinusoidal Carrier PWM (VFISCPWM)

In this technique, two inverted sinusoidal carrier signals having frequency different from each other are taken to compare with the sinusoidal reference wave as demonstrated in Fig.14 [14].

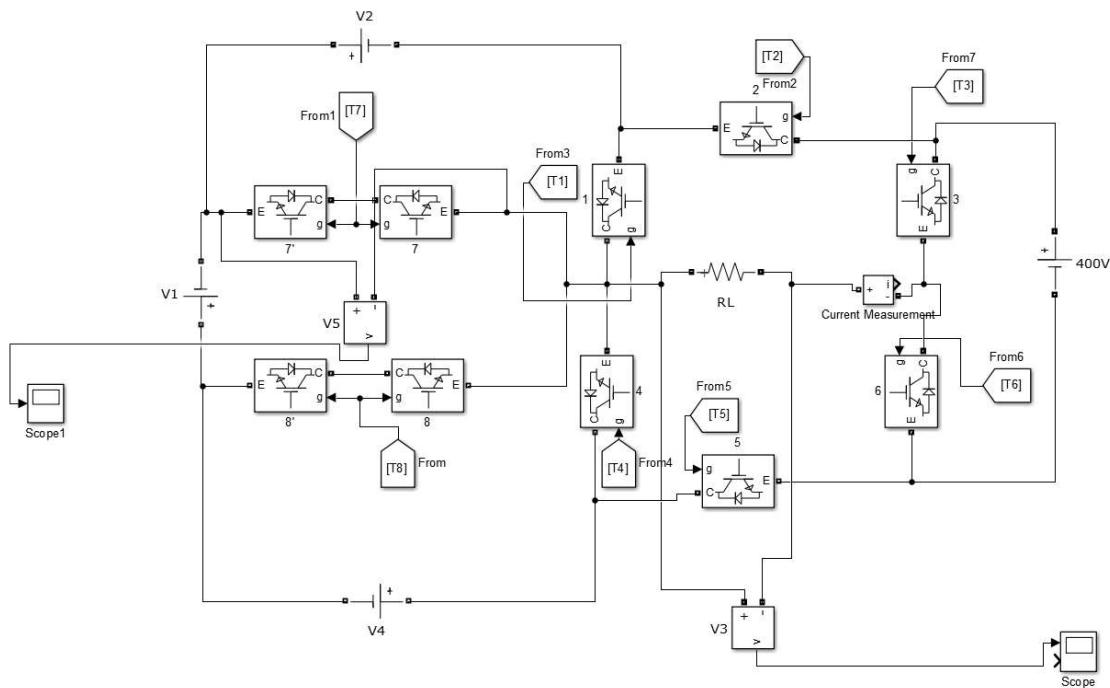


Fig.14. VFISCPWM

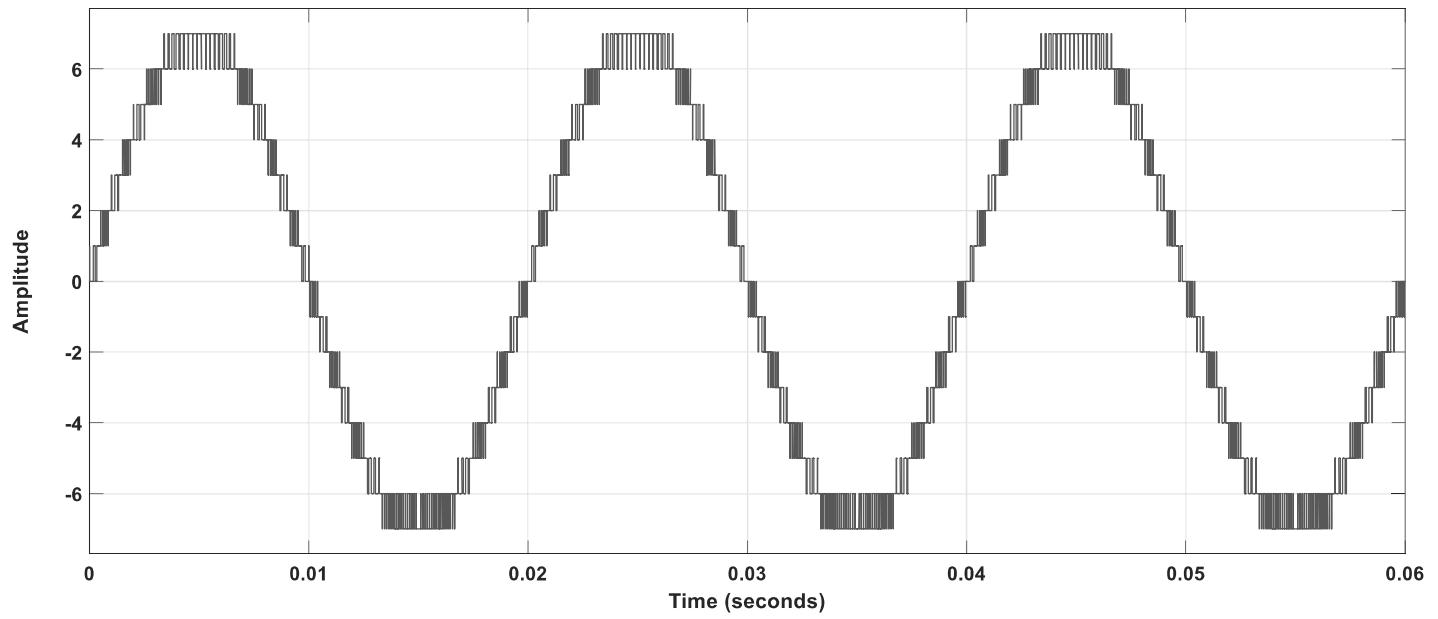
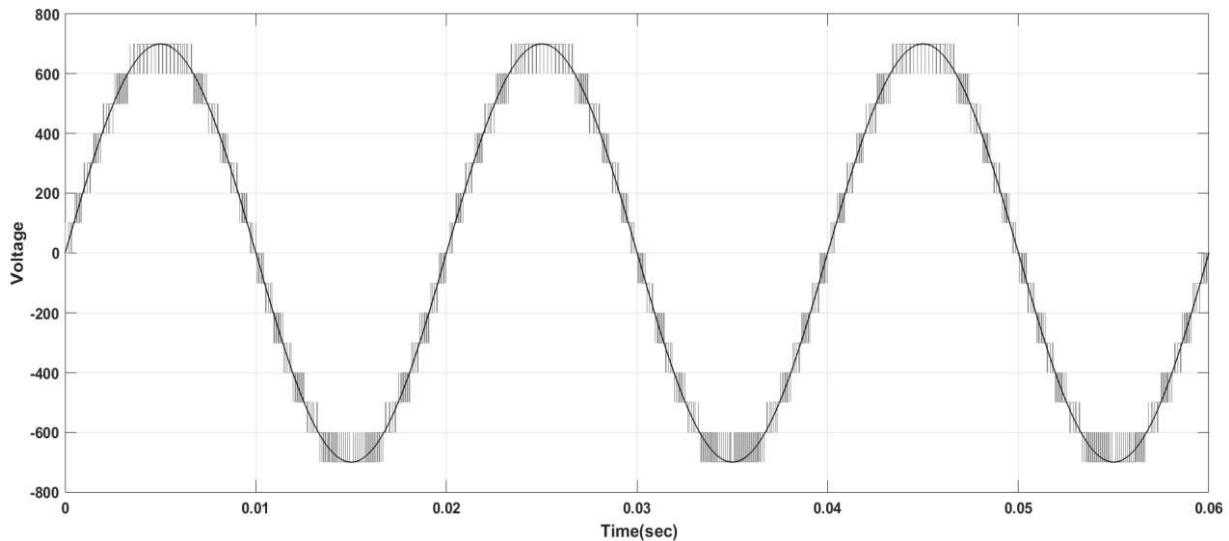

3.3 Simulation

Fig.15 Universal Control Technique Triggering Circuit (Simulink)

Fig. Proposed Topology in Simulink


Fig.16 Fifteen Level Triggering

CHAPTER-IV

RESULTS AND DISCUSSION

4.1 Simulation Results

Using MATLAB/SIMULINK R2016a software, the performance of the suggested topology was evaluated. The simulation has assumed the switches to be lossless. A high switching frequency approach with a carrier frequency of 10 kHz is employed in this study [15]. This paper uses six PWM approaches, including PD, POD, APOD, VFPD, ISC and VFISC, with various modulating indices. The simulation parameters are as follows: $R = 40\text{-ohm}$, DC voltage source $V_1 = 100\text{V}$ and $V_2 = 400\text{V}$; carrier signal frequency is 10 kHz.

Fig.17 Output Voltage Waveform of Fifteen-Level Inverter

4.2 FFT Analysis

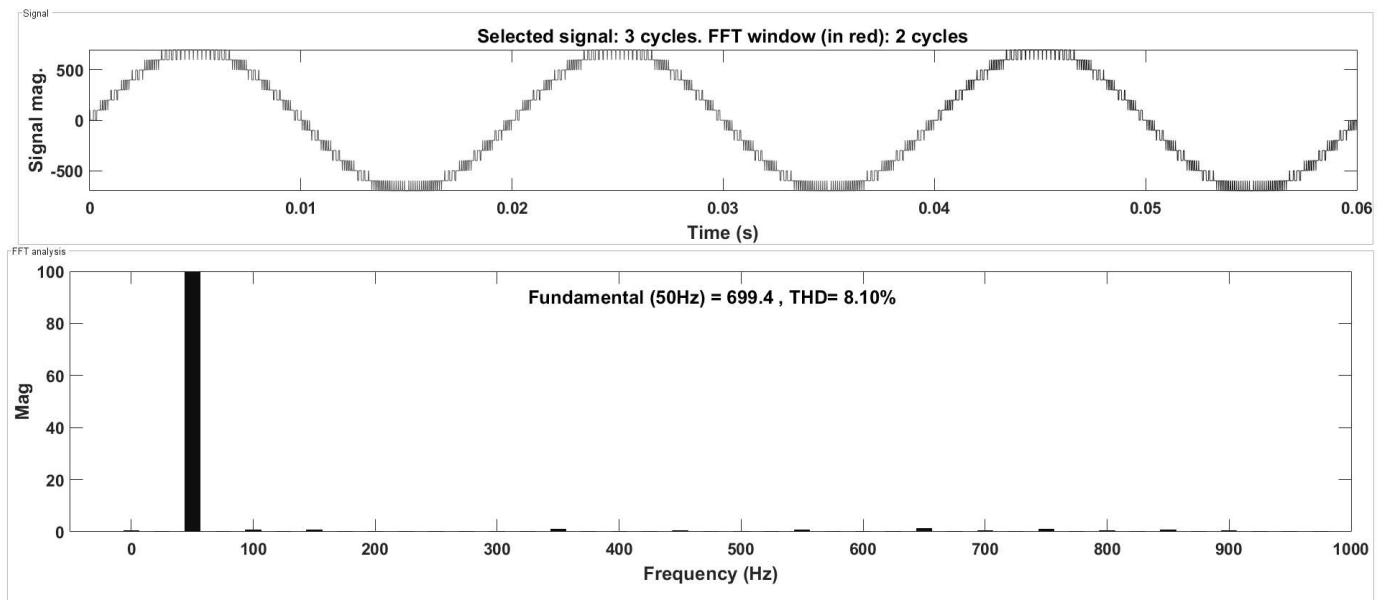


Fig.18 FFT Analysis of Voltage Signal

4.3 FFT Analysis of Different Techniques

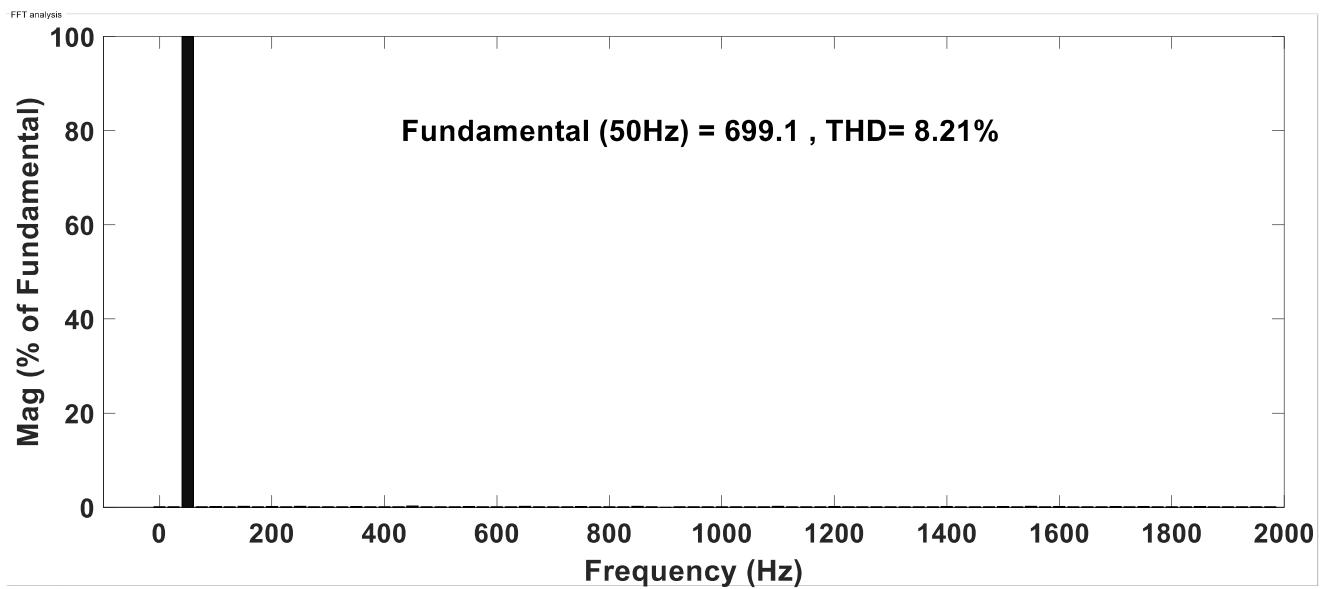
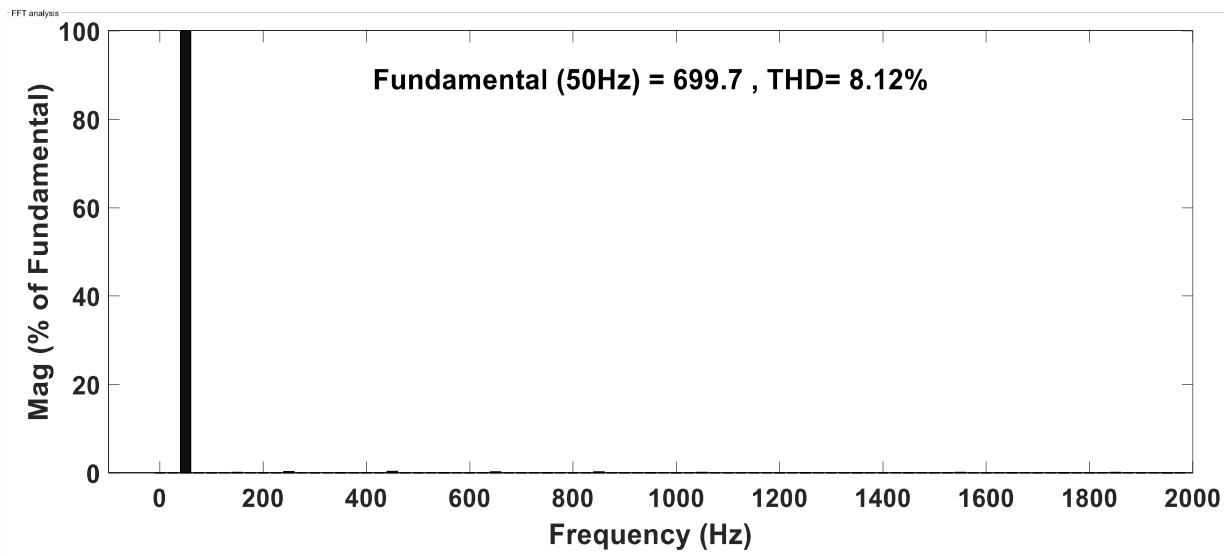
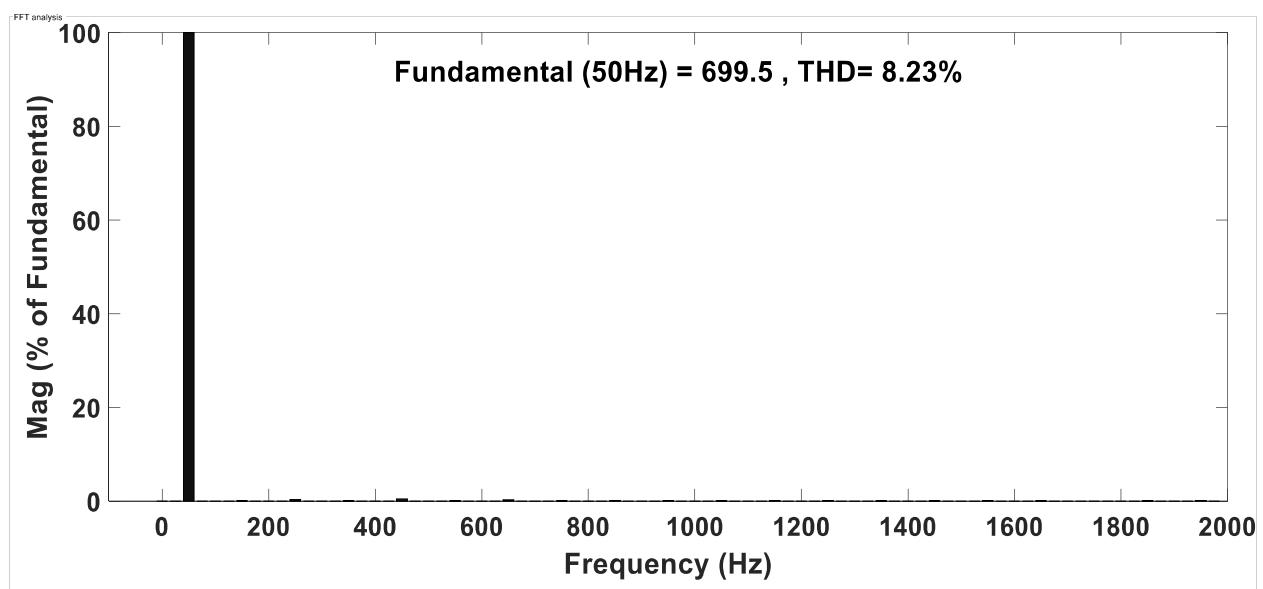




Fig.19. THD in PDPWM Technique

Fig.20. THD in PODPWM Technique

Fig.21. THD in APODPWM Technique

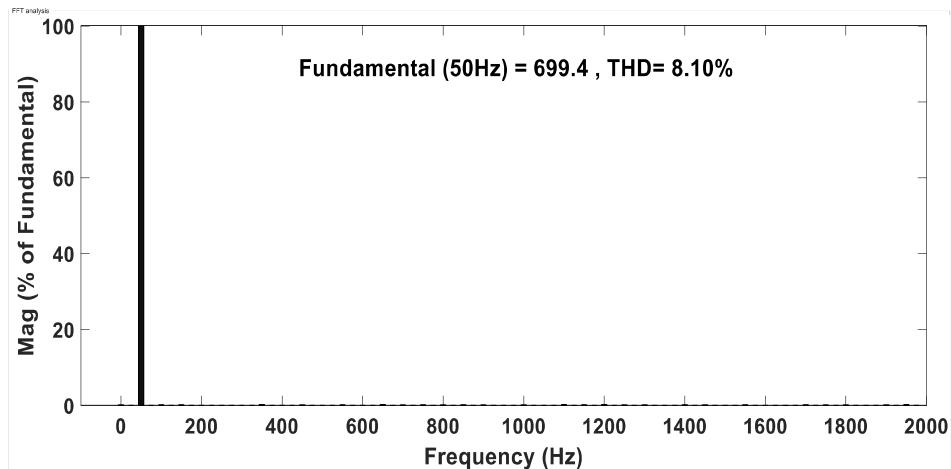


Fig.22. THD in VFPDPWM Technique

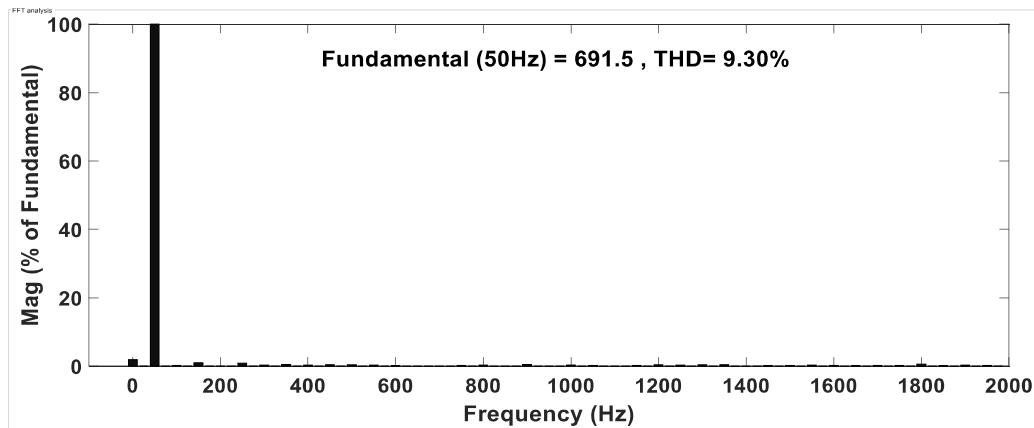


Fig.23. THD in ISCPWM Technique

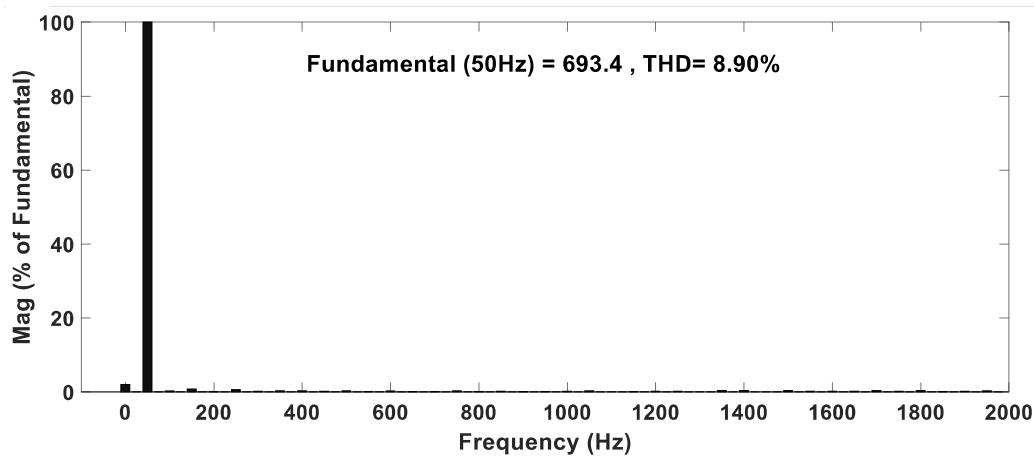
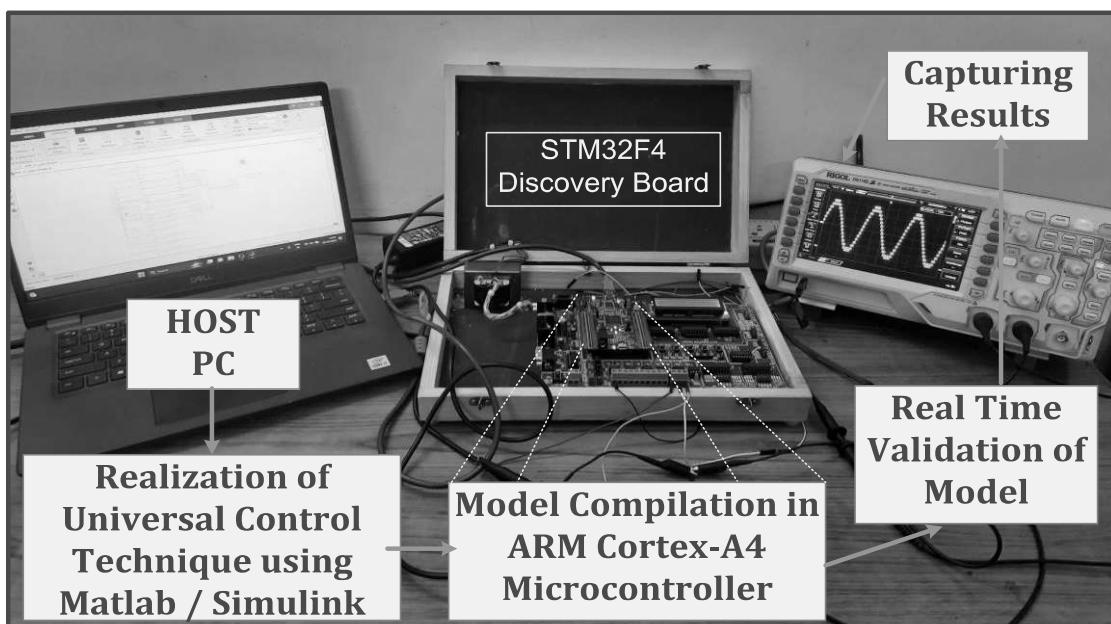


Fig.24. THD in VFISCPWM Technique

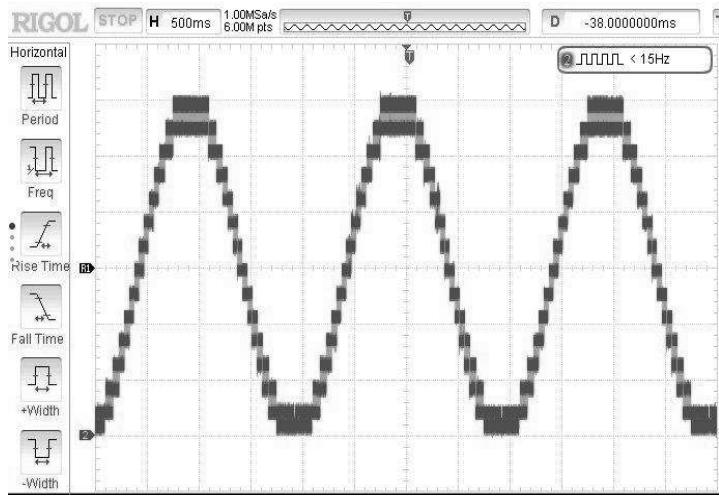
Table 2 THD Comparison of the Proposed MLI Topology using Various PWM Techniques under varying modulation index

Level	Modulation Index (Ma)	Modulation Technique					
		PD	POD	APOD	VF	ISC	VFISC
15	1.1	7.86	7.85	7.95	7.70	8.74	8.63
	1	8.21	8.12	8.23	8.10	9.30	8.9
	0.9	8.46	8.49	8.45	8.46	9.31	9.10
	0.8	8.9	8.94	8.85	8.81	9.37	9.20

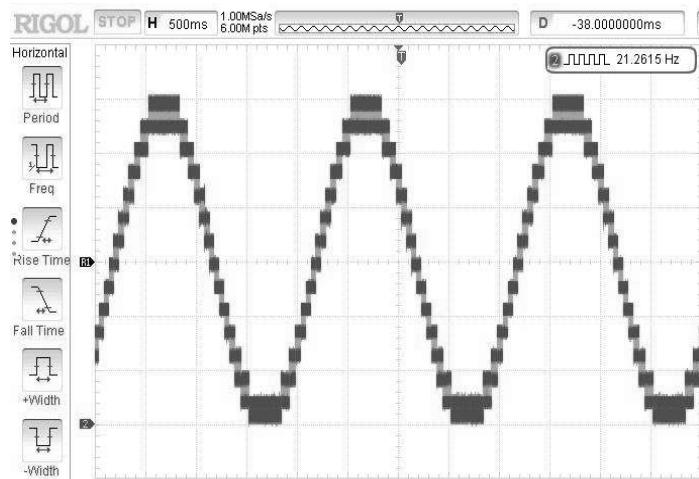
Table 3 Comparison of multiple MLI topology


Inverter Topologies	CHB	NPC	Flying-Capacitor	Proposed Topology
IGBTs/Switching Devices	28	28	28	8
Diodes	0	0	0	0
Clamping Diode	0	182	0	0
DC bus capacitor	0	14	14	0
Flying capacitor	0	0	91	0
DC source	7	1	1	4

4.4 Experimental Results & Discussion


In the paper, the universal control techniques have been implemented to control the MLI. Six different PWM modulations techniques have been presented on varying modulation index. In experimentation, a low cost STM32F4 discovery board haven been used to verify universal technique experimentally. The experimental photograph is shown in Fig. 14. The discovery board has ARM Cortex-M4 32-bit microcontrollers installed and have fifteen analog to digital pin (PA0-PA7, PB0-PB1 and PC0 to PC5), two digital to analog pins (PD0-PD1). In this paper DAC pins

are used to extract the outputs of multilevel inverter. Real-time implementation of created Simulink models can be readily created and loaded into the board memory by using Keil, STM32F4 embedded coder target, together with other useful tools.


Create a model using Simulink that includes embedded target blocks in accordance with the applications and accessibility requirements. Before creating any files for Simulink models, ensure that the primary directory path is correctly located in MATLAB's command window. Simulink models can be created and executed on a discovery kit by using the Support packages for STMicroelectronics' STM32F4 exploration board. Integrated into the support package are Simulink blocks for setting and gaining access to board's auxiliary devices. The STM32F4 blocks' third-party interface, in addition to MATLAB, is Wajung soft-ware. The user must install the STM link utility driver before they can finish in-stalling the Wajung block. Choose the parameters for the target arrangement based on your requirements. FIG. 25-27 displays the experimental findings at various modulation indices.

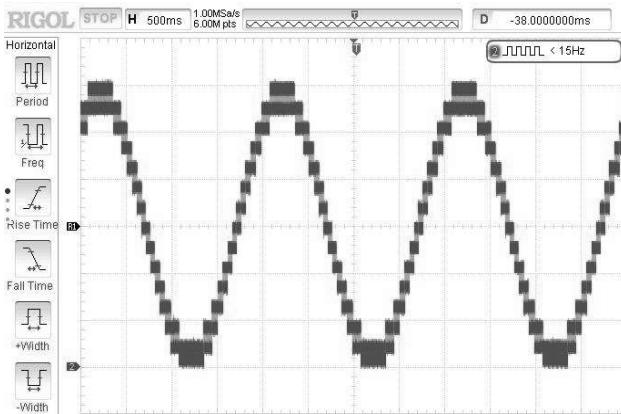

Fig.25 Experimental Realization of Universal Control Technique

Fig.26 Experimental Output Voltage at modulation index of 1

Fig.27 Experimental Output Voltage at modulation index of 0.9

Fig.28 Experimental Output Voltage at modulation index of 0.8

4.5 Conclusion

This work proposes a universal control technique that may be applied to any multilevel inverter topology to achieve a specific modulation strategy. Simulated tests are used to validate proposed concepts. Additionally, it has been demonstrated that the strategy may equally distribute the load among the various DC input sources. According to the comparative evaluation, the suggested 15-level topology has a lower minimum TSV_{pu} than other studied topologies and requires the fewest switches per level. This verifies the superiority and efficacy of the suggested 15-level structure.

4.6 References

1. R. A. Krishna and L. P. Suresh, "A brief review on multi-level inverter topologies," 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, 2016, pp. 1-6J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
2. G Singh. and V.K. Garg, "THD analysis of Cascaded H-Bridge Multi-Level Inverter," 2017 4th International Conference on Signal Processing , Computing and Control (ISPCC), pp. 1-6
3. M. Shamil, M. Darwish and C. Marouchos, "Single phase Multi level inverter with desire harmonics," 2012 47th International Universities Power Engineering Conference (UPEC), London, 2012, pp. 1-4
4. K. K. Gupta and S. Jain, "A novel universal control scheme for multilevel inverters," 6thIET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 2012, pp. 1-6.
5. OUnejjar, Y; Al-Haddad, K; Gregoire, L; , "Packed U Cells Multilevel Converter Topology: Theoretical Study and Experimental Validation," Industrial Electronics, IEEE Transactions on , vol.58 ,no. 4, pp. 1294-1306, April 2011.
6. N. Prabaharan and K. Palanisamy, "A new hybrid asymmetric multilevel inverter with reduced number of switches", 2016 IEEE International Conference on Power Electronics Drives and Energy Systems (PEDES), pp. 1-4, 2016.
7. Rodriguez, J., Jih-Sheng Lai, and Fang Zheng Peng, "Multilevel inverters: a Survey of topologies, control, and applications,' IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, Aug.2002.
8. Arif, MSB, Sarwer, Z, Siddique, MD, Md. Ayob, S, Iqbal, A, Mekhilef, S. Asymmetrical multilevel inverter topology with low total standing voltage and reduced switches count. Int J Circ Theor Appl. 2021; 49: 1757– 1775. <https://doi.org/10.1002/cta.2971>
9. Malinowski, M., Gopakumar, K., Rodriguez,J., and Perez, M.A., "A survey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., vol.57, no.7, pp.2197-2206, Jul.2010.
10. A. Nabae, I. Takahashi and H. Akagi, "A new neutral-point clamped PWM inverter", IEEE Trans. Ind. Applicat., vol. IA-17, pp. 518-523, Sept./Oct. 1981.
11. A. Kumar and P. Bansal, "A novel symmetrical multilevel inverter topology with reduced switching devices using different PWM techniques", International Conference on Electrical Electronics Signals Communication and Optimization (EESCO'15), pp. 1-6, 24–25 January 2015.

12. Jani Rushiraj and P.N. Kapil, "Analysis of Different Modulation techniques for multilevel inverters," in ISTIEEE International conference on power electronics, Intelligent control and energy system, 2016.
13. Bin Wu, "High Power Converters and Ac drives" Pg.no.131-139, A John wiley & sons, Inc; publication.
14. Agrawal N, Tomar SS, Bansal P (2017)A multilevel inverter topology using reverse-connected voltage sources. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, 2017, pp 1290–1295.
15. Nikhil Agrawal and P. bansal, "A new 21-level Asymmetrical multilevel inverter topology with different PWM techniques", *IEEE Conference RDCAPE 2017*, pp. 224-229.
16. K. Suresh and E. Parimalasundar, "A Modified Multi Level Inverter With Inverted SPWM Control," in IEEE Canadian Journal of Electrical and Computer Engineering, vol. 45, no. 2, pp. 99-104, Spring 2022, doi: 10.1109/ICJECE.2022.3150367.
17. A. Ishtiaq, M. Asim and M. Anis, "A Brief Review on Multi level Inverter Methodology Topologies and Techniques," 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 2022, pp. 1-5, doi: 10.1109/ICEFEET51821.2022.9848098.

Madhav Institute of Technology & Science, Gwalior (M.P.)
A Govt. Aided UGC Autonomous & NAAC Accredited Institute, Estd. In 1957, Affiliated
to RGPV Bhopal

ELECTRICAL ENGINEERING DEPARTMENT

PLAGIARISM CHECK CERTIFICATE

This is to certify that I, students of B.Tech. in Electrical Engineering Department have checked my complete internship/project report entitled "Experimental Realization of Universal Control Scheme for Asymmetrical Reduced Device Count Multilevel Inverter" for similarity/plagiarism using the "Turnitin" software available in the institute.

This is to certify that the similarity in my project is found to be 17% which is within the specified limit. Full plagiarism report along with summary is enclosed.

Student Name & Enrollment No.

DATE: 25 MAY, 2023

KUSHAGRA SHARMA (0901EE191062)

Prof. Praveen Bansal

Similarity Report ID: id:28506:36232203

PAPER NAME

KushProjectReport.pdf

WORD COUNT

4842 Words

CHARACTER COUNT

24775 Characters

PAGE COUNT

45 Pages

FILE SIZE

3.5MB

SUBMISSION DATE

May 26, 2023 12:25 PM GMT+5:30

REPORT DATE

May 26, 2023 12:26 PM GMT+5:30

● **17% Overall Similarity**

The combined total of all matches, including overlapping sources, for each database.

- 9% Internet database
- Crossref database
- 11% Submitted Works database
- 11% Publications database
- Crossref Posted Content database

● **Excluded from Similarity Report**

- Bibliographic material
- Small Matches (Less than 9 words)
- Cited material

Summary

Kushagra Sharma <ks14795@gmail.com>

Acceptance of Paper (Paper ID: 42) In ISCMCTR 2023, MITS, Gwalior
1 message**Microsoft CMT <email@msr-cmt.org>**Reply-To: Saurabh Kumar Rajput <saurabh9march@gmail.com>
To: Kushagra Sharma <ks14795@gmail.com>
Cc: saurabh9march@mitsgwalior.in

Thu, May 4, 2023 at 2:26 PM

Dear Authors

Thanks for submitting your research paper to International Student Conference on Multidisciplinary and Current Technical Research-2023

Technical Program Committee (TPC) of ISCMCTR-2023 is pleased to inform you that your paper [Paper ID: 42, Title: Experimental Realization of Universal Control Scheme for Asymmetrical Reduced Device Count Multilevel Inverter], has been accepted for presentation in the International Student Conference on Multidisciplinary and Current Technical Research-2023, MITS Gwalior, and provisionally accepted for publication, subjected to:

- Satisfactory revision of paper based on enclosed reviewer comments
- Presentation of paper by one author during the conference on May 20-21,2023
- Submission of camera-ready paper with good-quality illustrations using the template provided on the website.
- Plagiarism should be less than 20% and less than 6X from a single source
- Completing all registration formalities by at least one author per paper as per instructions available on the website and also as given below.

General comments by editors for preparing camera-ready paper:

Formatting to be according to the template on the website.

Add the latest references.

All the references should be cited using square brackets in the paper.

Look carefully for grammatical errors and correct each.

Reviewer comments are to be addressed in camera-ready paper

Reviewer's Comments:

The manuscript "Experimental Realization of Universal Control Scheme for Asymmetrical Reduced Device Count Multilevel Inverter" is well written presented and the work is useful for the research community, however the following suggestions can be considered for the betterment in the manuscript-

1. Latest references of year 2022 and 2023 may be added in the manuscript.
2. All the figures must be properly cited in the manuscript. While explaining the figures in text, authors has are using two different styles like Fig. and Figures. Please maintain the uniformity in the manuscript.
3. Plagiarism in the manuscript is quite high. Reduce the Pilgrims as per the conference guidelines.

Addressing comments or suggestions received during the presentation at the conference, if any, and their inclusion in the final paper may also be required before publication.

*****REGISTRATION PROCESS*****

Step 1. Implement the Editor's and Reviewer's comments in the paper.

Step 2. Camera-ready (Final Version) paper should be submitted through the registration link only.

Step 3. Payment for paper presentation will be done using QR Code (PhonePe, Paytm, GPay, etc.) and also through internet banking. QR code and details are available in the registration form itself.

Last date for registration & submission of the camera-ready paper is the May 10, 2023.

*****REGISTRATION LINK: <https://forms.gle/oM8usBFoZdGv7ShUJA>

Looking forward to meeting you.!!!

With Best Regards,

ISCMCTR-2023 Organizing Team

For any query, please write us at: iscmctr@mitsgwalior.in

Contact No. Dr. Nikhil Paliwal: 8871313135, Dr. Saurabh Kumar Rajput: 9555969573

Download the CMT app to access submissions and reviews on the move and receive notifications:

<https://apps.apple.com/us/app/conference-management-toolkit/id1532488001><https://play.google.com/store/apps/details?id=com.microsoft.research.cmt>

To stop receiving conference emails, you can check the 'Do not send me conference email' box from your User Profile.

Microsoft respects your privacy. To learn more, please read our [Privacy Statement](#).

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052