

1 | P a g e

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Final Year Internship Report

on

Web Development Internship

Submitted By:

Manoj Kumar

0901CS181059

Faculty Mentor:

Dr.Ranjeet Kumar Singh

Assistant Professor, Department Of Computer Science and Engineering

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

2 | P a g e

Web Development Internship

 A final year internship report submitted in partial fulfillment of the requirement for the

degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Manoj Kumar

0901CS181059

Internship Faculty Mentor:

Mr. Pushkar Goyal, Team Head,Praedico Global Research

Submitted to: Dr Ranjeet Kumar Singh

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

3 | P a g e

4 | P a g e

5 | P a g e

6 | P a g e

7 | P a g e

Table of Content page no.

 Abstract 2

 Chapter-1 3-7

 1 Introduction

1.1 Module

 2 figures

 2.1. ER Diagram

 2.2. Use Case Diagram

Chapter-2 8

3. Requirement Analysis

Chapter-3 9

 4. System Configuration

Chapter-4 8-13

 5. Technology

Chapter-5 14

 6. Enhancement

Chapter-6 15-23

7. Coding & Output

Chapter-7 24

 8. Conclusion

8 | P a g e

 Abstract

In web development I have learned full stack developing course where we have

created blogsite. In this website project anyone can read and write blogs and admin

can manage all the activities and user can register in website and read and write

according to us. Many students have already found how much fun it is to

learn programming with Python. It's now time to advance Python to the next level.

This course will cover Django, an open source Python web framework that helps

you save time and enjoy web development. It's Computer Science Course who wish

to make his career in IT companies then he can opt for this course. how to create

beautiful web applications with minimal effort. The Model-View-Controller (MVC)

architectural paradigm is used by Django. Its purpose is to make building complex,

database-driven websites easier. Django stresses component reusability and

"pluggability," quick development, and the DRY (Don't Repeat Yourself) concept.

Even settings, files, and data models are written in Python. Setup and configuration,

template language, and other topics will be covered throughout the event.

9 | P a g e

Chapter-1

Introduction:
Blogging has become such a mania that a new blog is being created every hour,every minute,every

second .A blog is the best voice among the online crowd.People who want to gain and share

knowledge or information can use this website.Users can share their views on different aspects,

current trends,current topics through blog posts.

It is helpful for all those who want to post their blogs ,who want to read new blogs on a daily

basis.Blogs on different categories will be available to read.Users can later update or delete their

posts if they feel any need to do so.

If users are facing any query they can fill in their contact details and send their queries to the admin.

And there is an admin who can review posts,can add,delete and update different

categories,subcategories.It can see the required details of all the registered users.

Objectives
To provide a platform where users can create and see different blog articles about the organization.

Users can submit their queries related to the website by filling their details in the contact form.

Blogs created can be deleted or updated by the users.

Admin can see all the blogs posted on the website.

Admin can delete inappropriate blogs.

Admin can add categories and subcategories under which blogs will be posted.

Scope
Build a online blogging website

Data retrieval and search functionality ,django mailing system for forgetting password.

Created database tables in django admin.

1.1 Modules

 ● User

On the landing page users will see the two active buttons- admin login and user login so general

users will click on the user login to enter the user homepage.

A. Guest User

 ● Home Page

Navigation Bar—links

Categories
Guest Users can see the different categories available to post and read blogs.

Using the SubcategoryShow button on this page user can see different subcategories under

aparticular category.

SubCategories

10 | P a g e

Guest Users can see the different Subcategories available to post and read blogs.

Blogs
Users can see all the blogs which have been posted on the website.

Contact
Using this contact form users can submit their which they are facing regarding the website or

anything related to the website.

About
Using this you can read information related to the website.

Login
Clicking on the login button on the navigation bar, a login form will open using which a registered

user can log in to the website.

As soon as the user logs in a session will be created which will be alive until he logs out.

Register

Clicking on the register button on the navigation bar, a registration form will open using which new

user can register filling the required credentials

B. Authenticated User

 Home Page

Navigation Bar – links

Categories
Authenticated Users can see the different categories available to post and read blogs.

Using the SubcategoryShow button on this page user can see different subcategories under a

particular category.

SubCategories
 Guest Users can see the different Subcategories available to post and read blogs.
Blogs

ALL BLOGS - User can see all the which have been posted on the website.

MY BLOGS - User can see his own blog posts.

Update - User can update his blog using this form which will open on next

page.

Delete - User can delete his blog post if wish to do so.

ADD BLOG - Clicking on this link a form will open using which a user can select

category then subcategory and title ,image icon,content for the blog post and click on the submit to

upload the blog.

11 | P a g e

Contact
Using this contact form users can submit their which they are facing regarding the website or

anything related to the website.

.About
Using this you can read information related to the website.

Logout
Clicking on the logout button user can log out of the website and his session will be expired at

that moment itself.

Admin

1. Before login

Home Page

Navigation Bar

Login
Using the Login Button on the website admin can login to the website.

As soon as the admin logs in a session will be created which will be alive until he logs out.

2. After Login

Home Page

Navigation Bar

Category
1. Category add link will open new page where admin add new categories.

Update - On this page, admin can use update button which will open new page admin can

update information regarding category.

Delete - Using this button admin can delete category.

SubCategory
1. SubCategory add link will open new page where admin add new categories. Update - On

this page, admin can use update button which will open new page

admin can update information regarding Subcategory.

Delete - Using this button admin can delete Subcategory.

Users
Users option on the navigation bar will show the list of all the registered users to admin.

Blogs
Blogs option will show all the blogs which have been posted on the website to the admin.

Admin can delete inappropriate blogs if he feels the need to do so.

Logout
Clicking on the logout button admin can log out of the website and his session will expired at

that moment itself.

12 | P a g e

2. FIGURES

 Fig-2(ER Diagram)

In this web application, Users (login id ,password,username,mobno) owns blogs

(title,image,content),user is a foreign key for the blog table.Subcategory

(name,title,description) contains blogs which is a foreign key for blog table.Category

(name,title,description) has subcategories as a foreign key

13 | P a g e

 Fig-2(use of case Diagram)

User will register and login on website.He can create,update,delete bogs,can submit queries,can

see categories and subcategories.Admin can login,see queries sent by users, add,update, delete

categories and subcategories.

14 | P a g e

Chapter-2
1. Requirement Analysis

Phase 1: Requirement collection and analysis: As a part of the standard protocol, we will

create a static prototype of the website which will be non – working. This prototype will give

you an idea of how the actual website will look like.

Phase 2: Design: In this phase, the system and software design documents are prepared as per

the requirement specification document. This helps define overall system architecture. We

will appoint a designer to provide a user friendly, eye catchy design to your project. To

ensure a top-quality design you can give any reference website or template. This will help us

to visualize the requirement and help us to provide the website of your choice.

Phase 3: Coding: Once the system design phase is over, the next phase is coding. In this

phase, developers start to build the entire system by writing code using the chosen

programming language.

Phase 4: Testing: Once the software is complete, it will be deployed in the testing

environment. The testing team starts testing the functionality of the entire system. This will

be done to verify that the entire application works according to your requirement. During this

phase, QA and testing team may find some bugs/defects which they will communicate to our

developers. The development team will fix the bug and send it back to QA for a re-test. This

process will continue until the software is bug-free, stable, and working according to your

business needs

Phase 5: Installation/Deployment: Once the software testing phase is over and no bugs or

errors left in the system then the final deployment process will start.

15 | P a g e

Chapter -3

4 System Requirement Specification

4.1 System Configuration

A system configuration in systems engineering defines the computers, processes, and devices

that compose the system and its boundary. More general the system configuration is the

specific definition of the elements that define and/or prescribe what a system is composed of.

4.2 Software Requirement

 Technology : python django

 IDE: pycharm /atom

 Client side technologies: HTML , CSS, JAVASCRIPT ,BOOTSTRAP

 Server side techhnologies: python

 Data base server : sqlite

 Operating systems: Microsoft windows/ linux

4.3 Hardware Requirements

Intel Core i5 processor

8GB RAM

1 TB hard disk

16 | P a g e

Chapter -4

Technology used

HTML

CSS

BOOTSTRAP

PYTHON

DJANGO

VISUAL STUDIO CODE EDITOR

DB SQLITE

Short Intro about technologies used:

HTML (Hypertext Markup Language) is the set of markup symbols or codes inserted in a file

intended for display on a World Wide Web browser page. The markup tells the Web browser

how to display a Web page's words and images for the user. Each individual markup code is

referred to as an element (but many people also refer to it as a tag). Some elements come in

pairs that indicate when some display effect is to begin and when it is to end.

CASCADING STYLE SHEET (CSS)

Cascading Style Sheets (CSS) are a collection of rules we use to define and modify web pages

CSS are similar styles in Word. CSS allow Web designers to have much more control over

their pages look and layout. For instance, you could create a style that defines the body text to

be Verdana, 10 point. Later on, you may easily change the body text to Times New Roman, 12

point by just changing the rule in the CSS. Instead of having to change the font on each page

of your website, all you need to do is redefine the style on the style sheet, and it will instantly

change on all of the pages that the style sheet has been applied to. With HTML styles, the font

change would be applied to each instance of that font and have to be changed in each spot

CSS can control the placement of text and objects on your pages as well as the look of those

HTML information creates the objects (or gives objects meaning), but styles describe how the

objects should appear. The HTML gives your page structure, while the CSS creates the

"presentation". An extemal CSS is really just a text file with a css extension. These files can

be created with Dreamweaver, a CSS editor, or even Notepad.

17 | P a g e

The best practice is to design your web page on paper first so you know where you will want

to use styles on your page. Then you can create the styles and apply them to your page

LANGUAGE Used: Python

Python is a widely used general-purpose, high level programming language. It was initially

designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It was

mainly developed for emphasis on code readability, and its syntax allows programmers to

express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more

efficiently.

Python is dynamically typed and garbage-collected. It supports multiple programming

paradigms, including procedural, object-oriented, and functional programming Python is often

described as a "batteries included" language due to its comprehensive standard library

18 | P a g e

 Bootstrap

Bootstrap is one of the most popular front-end frameworks out there. It contains some amazing CSS

classes for UI development.

Bootstrap has pre-defined CSS files and JavaScript code, which you can link with HTML files. Those

CSS files contain classes that can be directly used on HTML elements. We used it in our Django

static files DataFlair tutorial.

 Django

Django is basically a high-level Python web application framework that enables the rapid

development of web applications. It achieves so with pragmatic, much cleaner design and is also easy

to use (in comparison of other frameworks) thus is very popular among web developers.

It is a backend framework used to resolve problems of connectivity with databases, other server

problems, SEO solutions, etc so that a web developer need not write the same code for the similar

modules (like database connection, admin interface) for each website.

All the functionality comes in the Django framework in the form of web applications. You just have

to import those applications according to your need and thus you can concentrate more on the unique

application of your website rather than dealing with all these backend problems.

 CRUD
CRUD stands for Create, Read, Update & Delete. These are the four basic operations which are

executed on Database Models. We are developing a web app which is capable of performing these

operations.

Since we are developing a library app, let’s take an example of the same. In a library, books are

objects. The books have attributes like name, author, etc. We need an application which can perform

CRUD operations on book object. The CRUD operations are defined as follows:

1. Read Operation
The ability of the application to read data from the database.

2. Create Operation
The ability of the application to store data in the database.

3. Update Operation
The ability of the application to edit the stored value in the database.

4. Delete Operation

The ability of the application to delete the value in the database.

We are going to develop the operations in the same order.

Majority of applications on the internet are CRUD applications. For example – Facebook uses

CRUD operations to save your data on their database. You can change your profile picture that means

19 | P a g e

perform the update operation. Of course, you can see the data in-app or browser which is read

operation.

Also, you can delete your Facebook account which is delete operation. Summarising it, almost all the

applications you use are CRUD applications.

For developers, making a CRUD application is one of the very first steps. If you can make a CRUD

app from technology then you can start deploying projects.

MTV Architecture Components (Model, Template, and View)

This is a variation of the MVC pattern as you can see in the acronym itself the Template keyword

replaces the Controller. Although, the Template is not exactly functioning as the controller and has

some different properties than the controller.

The definitions of Model still remain the same that is, the Model contains the logical file structure

of the project and is the middleware & data handler between database and view. The Model provides

a definition of how the data formats as coming from the view so, it stores in the database and vice-

versa, i.e., the retrieving information from the database transfers to the view in the displayable format.

 fig

Chapter-5

https://data-flair.training/blogs/django-project-layout/
https://data-flair.training/blogs/django-project-layout/

20 | P a g e

5.Enhancements

Proposed Enhancement:

1. More functionality can be added

2. Search Optimization can be enhanced

3. Security can be improved

4. User Interface can be improved.

Chapter-6

21 | P a g e

Coding & Output

usermodule: views.py
from django.shortcuts import render, redirect, HttpResponse

from userapp.models import Register, Blog

from django.contrib import messages

from adminapp.models import category, subcategory

from datetime import date

Create your views here.

def home(request):

return render(request,'userapp/userbluhome.html')

def home(request):

 rec = request.session.get('sessid', False)

 context = {'rec': rec}

 return render(request, 'userapp/userbluhome.html', context)

def reguser(request):

 if request.method == "POST":

 unm = request.POST.get('unm')

 eid = request.POST.get('eid')

 mno = request.POST.get('mno')

 pwd1 = request.POST.get('pwdru1')

 pwd2 = request.POST.get('pwdru2')

 regdate = date.today()

 if pwd1 == pwd2:

 request.session['sessid']: eid

 user_data = Register(unm=unm, mno=mno, eid=eid,

pwd=pwd1, regdate=regdate)

 user_data.save()

 messages.success(request, 'you are successfully

registered')

 return redirect('registered')

 return render(request, 'userapp/userbluhome.html')

def registered(request):

 return render(request, 'userapp/indexalu.html')

def login(request):

 leid = request.POST.get('leid')

 pwd1 = request.POST.get('pwdlu')

 res = Register.objects.filter(eid=leid, pwd=pwd1).exists()

22 | P a g e

 if res:

 request.session['sessid'] = leid

 messages.success(request, 'you are logged in successfully')

 return redirect('/userapp/login')

 else:

 return render(request, 'userapp/userbluhome.html')

def logout(request):

 del request.session['sessid']

 messages.success(request, 'You are logged out successfully')

 return redirect('/userapp')

def contactblu(request):

 return render(request, 'userapp/contactblu.html')

def addblogcat(request):

 data = category.objects.all()

 c_id = request.GET.get('name')

 print(c_id)

 context = {'data': data, 'c_id': c_id}

 return render(request, 'userapp/addblogcat.html', context)

def addblog(request, c_id):

 rec = request.session.get('sessid', False)

 unm = Register.objects.get(eid=rec)

 data1 = category.objects.get(id=c_id)

 data2 = subcategory.objects.filter(cname=c_id)

 if request.method == "POST":

 scname = request.POST.get('scname')

 print('subcategory', scname)

 print('category...', name)

 title = request.POST['btitle']

 content = request.POST['blgcontent']

 post_date = date.today()

 blg_data = Blog(title=title, content=content, slug='',

unm=unm, subcategory=scname, timestamp=post_date)

 blg_data.save()

 context = {'data1': data1, 'data2': data2}

 return render(request, 'userapp/addblog.html', context)

def showbloghome(request):

23 | P a g e

 blog_data = Blog.objects.all()

 rec = request.session.get('sessid', False)

 context = {'blog_data': blog_data, 'rec': rec}

 return render(request, 'userapp/showbloghome.html', context)

def showblog(request, slug):

 blg_data = Blog.objects.filter(slug=slug).first()

 current_user = blg_data.unm

 rec = request.session.get('sessid', False)

 loggedin_user = Register.objects.get(unm=current_user)

 context = {'blg_data': blg_data, 'rec': rec, 'l_user':

loggedin_user}

 return render(request, 'userapp/showblog.html', context)

def myblogs(request):

 rec = request.session.get('sessid', False)

 unm = Register.objects.get(eid=rec)

 user_blog = Blog.objects.filter(unm=unm)

 context = {'user_blog': user_blog}

 return render(request, 'userapp/myblogs.html', context)

def updateblog(request, blg_id):

 data = Blog.objects.get(id=blg_id)

 context = {'data': data}

 if request.method == "POST":

 title = request.POST.get('btitle')

 icon = request.POST.get('bgicon')

 content = request.POST.get('blgcontent')

 Blog.objects.filter(id=blg_id).update(title=title,

bl_image=icon, content=content)

 messages.success(request, 'Your post has been updated

successfully')

 return redirect('/userapp/showbloghome/')

 return render(request, 'userapp/updateblog.html', context)

def deleteblog(request, bl_id):

 Blog.objects.filter(id=bl_id).delete()

 messages.error(request, 'Your post has been deleted')

 return redirect('/userapp/showbloghome')

from django.core.mail import EmailMessage

24 | P a g e

from django.conf import settings

from django.template.loader import render_to_string

def success(request, email, pwed, unm):

 context = {}

 context = {'email': email}

 template = render_to_string('userapp/success.html')

 email = EmailMessage(

 'thanks',

 f'Hello "{unm}" Your password is {pwed} Please use this

password to login ',

 settings.EMAIL_HOST_USER,

 [email]

)

 email.fail_silently = False

 email.send()

 return HttpResponse('error please try again')

def forget_password(request):

 rec = request.session.get('sessid', False)

 if request.method == "POST":

 email1 = request.POST.get('fmail')

 if not email1:

 return HttpResponse('please ennter your email id')

 email = Register.objects.get(eid=email1)

 m_email = email.eid

 pwed = email.pwd

 unm = email.unm

 success(request, m_email, pwed, unm)

 return render(request, 'userapp/success.html', {'rec': rec})

def search(request):

 rec = request.session.get('sessid', False)

 data = Blog.objects.filter()

 query = request.GET.get('query')

 blogtitle = Blog.objects.filter(title__icontains=query)

 blogcontent = Blog.objects.filter(content__icontains=query)

 allposts = blogtitle.union(blogcontent)

 context = {'rec': rec, 'allposts': allposts}

25 | P a g e

 return render(request, 'userapp/search.html', context)

user module : urls.py

from django.contrib import admin

from django.urls import path, include

from . import views

urlpatterns = [

 path('', views.home, name='home'),

 path('reguser', views.reguser, name='reguser'),

 path('registered', views.registered, name='registered'),

 path('login', views.login, name='login'),

 path('logout', views.logout, name='logout'),

 path('contactblu/', views.contactblu, name='contactblu'),

 path('addblogcat/', views.addblogcat, name='addblogcat'),

 path('addblog/<str:c_id>', views.addblog, name='addblog'),

 # path('showcatalu',views.showcatalu,name='showcatalu'),

 path('showbloghome/', views.showbloghome, name='showbloghome'),

 path('showblog/<str:slug>', views.showblog, name='showblog'),

 path('myblogs', views.myblogs, name='myblogs'),

 path('updateblog/<str:blg_id>/', views.updateblog, name='updateblog'),

 path('deleteblog/<str:bl_id>/', views.deleteblog, name='deleteblog'),

 path('success/', views.forget_password, name='success'),

 path('search/', views.search, name='search'),

]

Admin module : models.py

from django.db import models

Create your models here.

class category(models.Model):

 catname = models.CharField(max_length=30)

 caticon = models.ImageField()

 catdesc = models.CharField(max_length=2000)

 regdate = models.DateField(auto_now=False, auto_now_add=True)

 def __str__(self):

 return self.catname

class subcategory(models.Model):

 scatname = models.CharField(max_length=30)

 scicon = models.ImageField()

 scdesc = models.CharField(max_length=2000)

 regdate = models.DateField()

 cname = models.ForeignKey(category, on_delete=models.CASCADE)

26 | P a g e

Front End

Landing Page

User Login page

27 | P a g e

User Contact page

User Reg. Page

28 | P a g e

Admin panel

Admin login page

29 | P a g e

Admin Crud Operation

User show page

30 | P a g e

Conclusion:

Users can visit website, read posts,submit their queries,can see about website,search for blogs using

special keywords,log in or register on website.

After login and register users can add,see, delete and update their own blog posts, and can also fill

the contact form to submit their queries.

Admin after login on the website can add, update, delete categories and subcategories, can delete

inappropriate blog posts, can see details of all the registered users.

31 | P a g e

FPR

32 | P a g e

33 | P a g e

34 | P a g e

35 | P a g e

36 | P a g e

37 | P a g e

	Manoj Kumar 0901CS181059
	Web Development Internship
	Manoj Kumar
	0901CS181059
	Bootstrap
	Django

	4. Delete Operation
	MTV Architecture Components (Model, Template, and View)

