

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Project Report

on

EMAIL-NOTIFICATION SYSTEM USING MULESOFT

Submitted By:

PALAK GUPTA

0901CS191072

AMAN DAYANI

0901CS191014

Faculty Mentor:

Mr. Mir Shahnawaz Ahmad

Asst. Prof.

CSE, MITS

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Project Report

on

EMAIL-NOTIFICATION SYSTEM USING MULESOFT

A project report submitted in partial fulfilment of the requirement for the degree of

BACHELOR OF TECHNOLOGY

 in

 COMPUTER SCIENCE AND ENGINEERING

Submitted by:

PALAK GUPTA

0901CS191072

AMAN DAYANI

0901cs191014

Faculty Mentor:

Mr. Mir Shahnawaz Ahmad

Asst. Prof.

CSE, MITS

Submitted to:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Afiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that PALAK GUPTA (0901CS191072) has submitted the project report
titled E-MAIL NOTIFICATION SYSTEM USING MULESOFT under the mentorship of

Ast. Mr. Mir Shahnawaz Ahmad, in partial fulfilment of the requirement for the award of

degree of Bachelor of Technology in Computer Science and Engineering from Madhav

Institute of Technology and Science, Gwalior.

Mr. Mir Shahnawaz Ahmad Dr. Manish Dixit

Faculty Mentor Professor and Head

Assistant Professor Computer Science and Engineering

Computer Science and Engineering Dr. Manish Dixit

Professor & HOD

Department of CSE

M.I.T.S. Gwalior

i

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that AMAN DAYANI (0901CS191014) has submitted the project report
titled E-MAIL NOTIFICATION SYSTEM USING MULESOFT under the mentorship of

Asst. Mr. Mir Shahnawaz Ahmad, in partial fulfilment of the requireme for the award of
degree of Bachelor of Technology in Computer Science and Engineering from Madhav

Institute of Technology and Science, Gwalior.

oqs
Mr. Mir Shahnawaz Ahmad Dr. Manish Dixit

Faculty Mentor Professor and Head

Assistant Professor Computer Science and Engineerianish Dixit
Computer Science and Engineering

Professor & HOD

Department of CSE

M.I.T.S. Gwalior

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

A Govt. Aided UGC Autonomous & NAAC Acredited Institute Afiliated to RGPV, Bhopal)

DECLARATION

Thereby declare that the work being presented in this project report, for the partial fulfilment

of requirement for the award of the degree of Bachelor of Technology in Computer Science

and Engineering at Madhav Institute of Technology & Science, Gwalior is an authenticated

and original record of my work under the mentorship of Mr. Mir Shahnawaz Ahmad,

Assistant Professor, CSE, MITS.

declare that I have not submitted the matter embodied in this report for the award of any

degree or diploma anywhere else.

PALAK GUPTA

0901CS191072

III Year

Computer Science and Engineering

(
AMAN DAYANI

0901CSI191014

Ill Year,

Computer Science and Engineering

ii

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomc us & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. I am thankful to my institute,
Madhav Institute of Technology and Science to allow me to continue my disciplinary/
interdisciplinary project as a curriculum requirement, under the provisions of the Flexible Curriculum

Scheme (based on the AICTE Model Curriculum 2018), approved by the Academic Council of the
institute. I extend my gratitude to the Director of the institute, Dr. R. K. Pandit and Dean Academics,
Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Department of Computer Science and Engineering,
for allowing me to explore this project. I humbly thank Dr. Manish Dixit, Professor and Head,
Department of Computer Science and Engineering, for his continued support during the course of this

engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty mentors. I am grateful to the guidance of Asst. Prof. Mir

Shahnawaz Ahmad ,CSE, MITS, for his sontinued support and guidance throughout the project. I

am also very thankful to the faculty and staff of the department.

PALAK GUPTA

0901 CS191072

Ill Year.

Computer Science and Engineering

(
AMAN DAYANI

0901CS191014

l Year.

Computer Science and Engineering

iv

v

Abstract

Underlying all IT architectures are core systems of records that are often not readily available due to its

complexity and connectivity concerns. System APIs provide a means of hiding that complexity from

the user while exposing data and providing downstream insulation from any interface changes or

rationalization of those systems. This API provides an implementation best practice for a notification

service that integrates with multiple systems like Gmail and Twilio and exposes a RESTful interface

that triggers a notification.

vi

सार:

अंतर्निर्ित सभी आईटी आर्कि टेक्चर ररकॉर्ि की कोर र्सस्टम िैं जो अक्सर इसकी जर्टलता और कनेक्टिर्िटी

र् ंताओ ंके कारण आसानी से उपलब्ध निी ंिोते िैं। र्सस्टम एपीआई रे्टा को उजागर करते समय उपयोगकताि

से उस जर्टलता को र्िपाने का एक साधन प्रदान करते िैं और र्कसी भी इंटरफेस पररितिन या उन प्रणार्लयो ंके

युक्टिकरण से र्ाउनस्टर ीम इनु्सलेशन प्रदान करते िैं। यि एपीआई एक अर्धसू ना सेिा के र्लए एक कायािन्वयन

सिोत्तम अभ्यास प्रदान करता िै जो जीमेल और र्िर्लयो जैसे कई र्सस्टमो ंके साथ एकीकृत िोता िै और एक

अर्धसू ना को र्टर गर करने िाले रीस्टफुल इंटरफेस को उजागर करता िै।

vii

TABLE OF CONTENTS

TITLE PAGE NO.

Abstract V

सार: VI

Table of Contents VII-VIII

Table of Figures IX

Chapter 1: Introduction 1

1.1 What is an E-mail Notification System? 1

1.2 Why do we need Email Notification System? 1

 1.3 How Mule Flow Works? 2

Chapter 2: Introduction to MuleSoft 3

 2.1What is MuleSoft? 3

 2.1.1 Components of MuleSoft 3

 2.2 What is an API? 4

 2.3 What is RAML? 5

 2.4 What is POP3? 5

 2.5 What is IMAP? 5

 2.6 What is SMTP? 6

Chapter 3: Email Connectors 7

 3.1 Pre- Requisites 7

 3.2 Use of Connectors 7

 Chapter 4: Software Design 8

 4.1 Create A Mule Project 8

 4.2 Add the Connector to Your Mule Project 8

 4.3 Configure a Source 8

 4.4 Add a Connected Operation to the Flow 9

 4.5 Configure a Global Element for the Connector 10

 4.6 Configure Additional Connector Fields 11

4.7 View the App Log 11

viii

4.8 Send Emails with Email Connector Examples - Mule 4 12

4.9 Send Emails 12

4.10 XML for Sending Emails 15

4.11 Send an Attachment 17

4.12 Send Multiple Attachments 19

4.13 Connect to Gmail with Email Connector Examples - Mule 4 24

Chapter 5: Conclusion and Future Scope 25

5.1 Conclusion 25

5.2 Future scope 25

References 26

ix

TABLE OF FIGURES

TITLE PAGE NO.

Chapter 1: Introduction

Figure 1.1 Email notification system 1

Figure 1.2 Mule flow 2

Chapter 4: Software Design

Figure 4.1 Email connector operations 10

Figure 4.2 Email Connector Global Element Configuration 11

Figure 4.3 Email Connector Send messages over SMTPS 12

Figure 4.4 Email SMTPS configuration 14

Figure 4.5 Email send operation configuration 15

Figure 4.6 Email connector send attachments over SMTP 17

Figure 4.7 Email send attachment operation configuration 19

Figure 4.8 Email connector multiple attachments 19

Figure 4.9 Email send multiple attachment configuration 22

Figure 4.10 Email connector example 24

1

Chapter 1: INTRODUCTION

1.1 What is an E-mail notification system?

Email notifications are a type of triggered email—email that’s sent in response to specific user

action or other event. For SaaS applications and web sites, common examples of these app-

generated emails include activation and welcome messages, activity notifications, account and

security alerts, and utilitarian functions like password resets.

Figure1.1 E-mail notification system

These notifications serve an important purpose—alerting us when a post was shared on social

media, reminding us to take action on a personal account, or asking us to approve payment for

goods and services.

Beyond these are purely functional needs, notifications also are a valuable communication tool

that enables product teams to directly engage with their customers. They are a persuasive

instrument for drawing users back to using apps that they might have forgotten about. They help

deliver a great user experience and are one of the most influential tools that product management

teams have to drive conversion, retention, and growth. Additionally, and perhaps most

importantly, they reinforce trust in services and help to build long-lasting relationships between a

SaaS business and its customers.

1.2 Why do we need Email Notification System?

• They have a high open-rate. Email notifications draw more attention compared

to promotional emails or newsletters since the notifications naturally contain only essential

https://sendpulse.com/support/glossary/promotional-email
https://sendpulse.com/support/glossary/email-newsletter

2

information that influences the user directly. A higher open rate, in turn, boosts the server's

reputation and ensures higher deliverability for your emails in the future.

• Keep the customer up to date. Changes to a website or service functionality can derail the

usual routine of your visitors, better make them prepared if they need to adjust their routine

for you. Sharing news on updates will minimize the possible adverse effect of changes.

• They help with customer retention. With regular notifications, visitors and customers can't

forget about you. An email notification is a way to say, “Hey, buddy, I’m still here for you, no

matter what.” Keeping your audience informed and being transparent nurtures trust and

loyalty in people.

1.3 HOW MULE FLOW WORKS

On API console, when we click on “GET”

1. our request is send to the HTTP endpoint

2. where an HTTP listener forwards the request to APIKit Router.

3. APIKit Router validates the request and the method which we are calling.

4. and send the request to the relevant flow i.e. “get:/user/queryuser:tutorialsAtoZ-

config”;

5. where are request is processed and we get a success response.

Figure 1.2 Mule flow

https://sendgrid.com/blog/why-the-notification-is-the-most-important-email-you-can-send-for-growth/
https://sendpulse.com/support/glossary/email-deliverability

3

Chapter 2: INTRODUCTION TO MULESOFT

2.1What is MuleSoft?

MuleSoft unifies data to deliver a single view of the customer, automates business processes, and

builds connected experiences. By using a modern API-led approach, each integration becomes a

reusable building block.

MuleSoft is a vendor that provides an integration platform to help businesses connect data,

applications and devices across on-premises and cloud computing environments. The company's

platform, called Any point Platform, includes various tools to develop, manage and test

application programming interfaces (APIs), which support these connections. MuleSoft, in May

2018, was acquired by Salesforce, a software as a service (SaaS) provider. Salesforce now uses

MuleSoft technology as part of its Salesforce Integration Cloud.

2.1.1Components of MuleSoft-

• API Designer is a web-based, graphical tool that a developer can use to design and

document an API, as well as share that design with team members. A developer can also

choose to reuse specific components of an API, such as security schema.

• API Manager is an interface through which a developer can manage APIs, as well as

secure them via an API gateway. With this component of the Anypoint platform, it's

possible to control user access to APIs, ensure secure connections to back-end data

sources and create policies around API calls and throttling.

• Anypoint Studio is a graphical, Java-based design environment that a developer can use

to deploy APIs to on-premises and cloud environments. Studio also includes features to

map, build, edit and debug data integrations.

• Anypoint Connectors are a set of built-in connectors that a developer can use to

integrate applications with thousands of third-party REST and SOAP.

• Anypoint Analytics is an analytics tool to track API metrics, such as performance and

usage. A developer can use this tool to create custom charts and dashboards to visualize

API performance, as well as identify the root cause of any performance issues.

• Anypoint Runtime Manager is a central console from which a developer can provision

and monitor all resources deployed on the Anypoint Platform across hybrid cloud

architectures.

• Anypoint Exchange is a central hub that a development team can use to store and access

APIs, templates, connectors, documentation and other resources.

https://www.techtarget.com/searchapparchitecture/definition/application-program-interface-API
https://www.techtarget.com/searchcloudcomputing/definition/Software-as-a-Service
https://www.techtarget.com/whatis/definition/API-gateway-application-programming-interface-gateway
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API
https://www.techtarget.com/searchapparchitecture/definition/SOAP-Simple-Object-Access-Protocol

4

• Anypoint Monitoring is a dashboard that helps a development team monitor application

health.

• Anypoint Visualizer is a graphical tool to map APIs and their dependencies in real time.

• Cloud Hub is a multi-tenant integration platform as a service (iPaaS) offering. Cloud

Hub is offered as a managed service, which means a development team does not need to

install or operate any hardware or software to use it.

2.2What is an API?

API is the acronym for Application Programming Interface, which is a software

intermediary that allows two applications to talk to each other. Each time you use an app like

Facebook, send an instant message, or check the weather on your phone, you’re using an API.

When you use an application on your mobile phone, the application connects to the Internet

and sends data to a server. The server then retrieves that data, interprets it, performs the

necessary actions and sends it back to your phone. The application then interprets that data

and presents you with the information you wanted in a readable way. This is what an API is -

all of this happens via API.

Here is a real-life API example. You may be familiar with the process of searching flights

online. Just like the restaurant, you have a variety of options to choose from, including

different cities, departure and return dates, and more. Let us imagine that you’re booking you

are flight on an airline website. You choose a departure city and date, a return city and date,

cabin class, as well as other variables. In order to book your flight, you interact with the

airline’s website to access their database and see if any seats are available on those dates and

what the costs might be. However, what if you are not using the airline’s website––a channel

that has direct access to the information? What if you are using an online travel service, such

as Kayak or Expedia, which aggregates information from a number of airline databases? The

travel service, in this case, interacts with the airline’s API. The API is the interface that, like

your helpful waiter, can be asked by that online travel service to get information from the

airline’s database to book seats, baggage options, etc. The API then takes the airline’s

response to your request and delivers it right back to the online travel service, which then

shows you the most updated, relevant information.

• Modern APIs adhere to standards (typically HTTP and REST), that are developer-friendly,

easily accessible and understood broadly

• They are treated more like products than code. They are designed for consumption for

specific audiences (e.g., mobile developers), they are documented, and they are versioned in a

way that users can have certain expectations of its maintenance and lifecycle.

https://www.techtarget.com/searchcloudcomputing/definition/iPaaS-integration-platform-as-a-service

5

• Because they are much more standardized, they have a much stronger discipline for security

and governance, as well as monitored and managed for performance and scale

• As any other piece of productized software, the modern API has its own software

development lifecycle (SDLC) of designing, testing, building, managing, and

versioning. Also, modern APIs are well documented for consumption and versioning.

2.3 What is an RAML?

RAML stands for RESTful API Modelling Language. A RAML provides a structure to the

API which is useful for developers to start their development process and also helps client

who is invoking the API to know beforehand what the API does.

A RAML contains:

1. Endpoint URL with its Query parameters and URI parameters,

2. HTTP methods to which API is listening to (GET, POST, PUT, DELETE),

3. Request and response schema and sample message,

4. HTTP response code that an API will return (e.g.: 200, 400, 404, 500).

2.4 What is POP3?

Post Office Protocol 3, or POP3, is the most commonly used protocol for receiving email

over the internet. This standard protocol, which most email servers and their clients support,

is used to receive emails from a remote server and send to a local client. Post Office Protocol

version 3 (POP3) is a mail protocol used to retrieve mail from a remote server to a local email

client. POP3 copies the mail from the remote server into the local mail client. Optionally,

mail is deleted after it is downloaded from the server.

2.5 What is IMAP?

Internet Message Access Protocol (IMAP) is a protocol for accessing email or bulletin

board messages from a (possibly shared) mail server or service. IMAP allows a client e-mail

program to access remote message stores as if they were local.

IMAP allows you to access your email wherever you are, from any device. When you read an

email message using IMAP, you aren't actually downloading or storing it on your computer;

instead, you're reading it from the email service. IMAP is similar to POP3, except IMAP

6

supports both online and offline modes. For instance, IMAP users can leave email messages

on the IMAP server until they explicitly delete them. Like POP3, IMAP cannot send email;

for that, you must use an SMTP outbound endpoint. The POP3 connector implements a

transport channel that enables your Mule application to retrieve email from a POP3 email

server. The connector is configurable only as an inbound endpoint, that is, as a message

source with a one-way exchange pattern.

2.6What is SMTP?

SMTP Stands for Simple Mail Transfer Protocol. SMTP is used to send and receive email.

It is sometimes paired with IMAP or POP3 (for example, by a user-level application), which

handles the retrieval of messages, while SMTP primarily sends messages to a server for

forwarding. The SMTP is a protocol used to transfer e-mail messages and attachments. SMTP

is used to transmit e-mail between e-mail servers and from e-mail clients (such as Microsoft

Outlook or UNIX and Linux's sendmail) to e-mail servers (such as Microsoft Exchange).

7

Chapter 3: EMAIL CONNECTORS

Anypoint Connector for Email (Email Connector) sends and retrieves email messages over standard

email protocols. Email Connector configurations share a basic set of parameters that require a

connection over the protocols you use.

3.1 Pre-Requisites

To use this connector, you must be familiar with:

o Anypoint Connectors

o Mule runtime engine (Mule)

o Elements and global elements in a Mule flow

o Creating a Mule app using Anypoint Studio (Studio)

3.2 Use of connectors

Email Connector enables you to:

o Retrieve emails from POP3 mailboxes

o Retrieve, delete, and store emails from IMAP mailboxes

o Send emails over the SMTP protocol

o Support secure connections for all protocols over Transport Layer Security (TLS)

8

Chapter 4: WORKING AND CODING

4.1Create a Mule Project

In Studio, create a new Mule project in which to add and configure the connector:

1. In Studio, select File > New > Mule Project.

2. Enter a name for your Mule project and click Finish.

4.2 Add the Connector to Your Mule Project

Add Email Connector to your Mule project to automatically populate the XML code with the

connector’s namespace and schema location and to add the required dependencies to the

project’s pom.xml file:

1. In the Mule Palette view, click (X) Search in Exchange.

2. In the Add Dependencies to Project window, type email in the search field.

3. Click Email Connector in Available modules.

4. Click Add.

5. Click Finish.

Adding a connector to a Mule project in Studio does not make that connector available to other

projects in your studio workspace.

4.3 Configure a Source

A source initiates a flow when a specified condition is met. You can configure one of these input

sources to use with Email Connector:

o On New Email - IMAP

Initiates a flow by retrieving all the emails from an IMAP mailbox folder, watermark can be

enabled for polled items

o On New Email - POP3

Initiates a flow by retrieving all the emails from an POP3 mailbox folder

o HTTP > Listener

Initiates a flow each time it receives a request on the configured host and port

o Scheduler

Initiates a flow when a time-based condition is met

9

For example, to configure the On New Email - IMAP source, follow these steps:

1. In the Mule Palette view, select Email > On New Email - IMAP.

2. Drag On New Email - IMAP to the Studio canvas.

3. On the On New Email - IMAP configuration screen, optionally change the value of

the Display Name field.

4. Click the plus sign (+) next to the Connector configuration field to configure a global

element that can be used by all instances of the source in the app.

5. On the Email IMAP window, for Connection select any of the connection types to

provide to this configuration:

o IMAP Connection

o IMAPS Connection

1. On the General tab, specify the connection information for the connector, such

as Host, Port and TLS configuration.

2. On the Advanced tab, optionally specify timeout configuration and reconnection

information, including a reconnection strategy.

3. Click OK.

4. On the On New Email - IMAP configuration screen, in the General section, select

a Scheduling Strategy to configure the scheduler that triggers the polling.

4.4 Add a Connector Operation to the Flow

When you add a connector operation to your flow, you immediately define a specific

operation for that connector to perform.

To add an operation for Email Connector, follow these steps:

1. In the Mule Palette view, select Email and then select the desired operation.

2. Drag the operation onto the Studio canvas and to the right of the input source.

 The following screenshot shows the Email Connector operations in the Mule Palette of

Anypoint Studio:

10

Figure 4.1 Email Connector Operations

4.5 Configure a Global Element for the Connector

When you configure a connector, it’s best to configure a global element that all instances of

that connector in the app can use. Configuring a global element for Email Connector requires

you to set a configuration based on the supported protocols for the connector operations:

Global Element Configuration Connector Operation/Sources

IMAP (Internet Message Access Protocol) o Delete

o Expunge Folder

o List - IMAP

o Mark As Deleted

o Mark As Read

o On New Email - IMAP

POP3 (Post Office Protocol 3) o List POP3

o On New Email - POP3

SMTP (Simple Mail Transfer Protocol) o Send

For example, to configure a POP3 global element for the List POP3 operation, follow these steps:

1. Select the name of the connector in the Studio canvas.

2. Select the List POP3 operation in the Studio canvas.

3. In the List POP3 configuration screen for the operation, click the plus sign (+) next to

the Connector configuration field to access the global element configuration fields. On

the Email POP3 window, for Connection select any of the connection types to provide

to this configuration:

o POP3 Connection

11

o POP3S Connection

1. On the General tab, specify the connection information for the connector, such

as Host, Port and TLS configuration.

2. On the Advanced tab, optionally specify timeout configuration and reconnection

information, including a reconnection strategy.

3. Click OK.

The following screenshot shows the Email Connector Global Element Configuration window

in Anypoint Studio:

Figure 4.2 Email Connector Global Element Configuration

4.6 Configure Additional Connector Fields

For IMAPS, POP3S, and SMTPS protocol connections, you can use Transport Layer Security

(TLS) and configure email by providing a key store with your certificate. Additionally, you

can also enable two-way authentication by providing a trust store.

4.7 View the App Log

 To check for problems, you can view the app log as follows:

o If you’re running the app from Anypoint Platform, the output is visible in the Anypoint

Studio console window.

12

o If you’re running the app using Mule from the command line, the app log is visible in

your OS console.

Unless the log file path is customized in the app’s log file (log4j2.xml), you can also view

the app log in the default location MULE_HOME/logs/<app-name>.log .

4.8 Send Emails with Email Connector Examples - Mule 4

Use Anypoint Connector for Email (Email Connector) to send messages over SMTP and SMTPS

servers by using the Send operation. The following examples show how to configure Email

Connector to send emails and attachments, in both Anypoint Studio and the XML editor:

o Send Emails

Configure the Email Connector Send operation to send emails over an SMTPS server.

o Send an Attachment

Configure the File Connector Read operation to read a JSON file and the Email

Connector Send operation to send the file as an attachment over an SMTP server.

o Send Multiple Attachments

Configure Set Variable components to define multiple media type attachments, and send

these attachments using the Email Connector Send operation. Then log the result message

using a Logger component.

4.9 Send Emails

The following example illustrates how to send emails over the SMTPS server. The flow

initiates with a Scheduler component, and then the Send operation sends the email. The

SMTPS connection type enables SSL or TLS encryption and sends encrypted messages over

the secured version of the SMTP server.

The following screenshot shows the app flow for this example:

Figure 4.3 Email Connector Send messages over SMTPS

To create the flow:

1. Create a new Mule project in Studio.

https://docs.mulesoft.com/email-connector/1.4/email-send#send-email
https://docs.mulesoft.com/email-connector/1.4/email-send#send-attachments
https://docs.mulesoft.com/email-connector/1.4/email-send#send-attachments

13

2. In the Mule Palette view, select the Scheduler component and drag it onto the canvas.

This source initiates a flow when a time-based condition is met.

3. Drag the Email Send operation to the right of the Scheduler source.

4. On the Send configuration screen, click the plus sign (+) next to the Connector

configuration field to configure a global element for the operation.

5. In the Connection field, select SMTPS Connection.

6. In the General tab, enter the following values:

o Host

pop.gmail.com

o Port

995

o User

user3@domain.com

o Password

passwordconnection

7. In the TLS Configuration section, select Edit inline.

8. In the Trust Store Configuration section, enter the following values:

o Path

aTruststore.jks

o Password

passwordtrust

9. In the Key Store Configuration section, enter the following values:

o Path

aKeystore

o Password passwordkey

10. In the Advanced section, set Enabled Protocols to TLSv1.2,SSLv3 .

14

11. Click OK to close the configuration window.

The following screenshot shows the Email SMTPS configuration:

Figure 4.4 Email SMTPS configuration

1. In the Send operation configuration screen, set the following values:

o From address

user1@domain.com

o To addresses

Edit inline

2. Click the plus sign (+) to add new emails.

3. Set the Value field to user2@domain.com .

4. Repeat the previous two actions and add another email as user3@domain.com .

15

5. Set the Subject field to IMPORTANT.

6. Set the Content field to "<h1>Hello this is an important message</h1>" and

the ContentType field to text/html .

If Content is not empty, the content of the message payload is used by default. If that

payload is not text , the operation fails with an EMAIL:SEND error.

7. Save and run the app.

The following screenshot shows the Send operation configuration:

Figure 4.5 Email Send operation configuration

4.10 XML for Sending Emails

Paste this code into the Studio XML editor to quickly load the flow for this example into your

Mule app:

16

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:tls="http://www.mulesoft.org/schema/mule/tls"

xmlns:email="http://www.mulesoft.org/schema/mule/email"

 xmlns="http://www.mulesoft.org/schema/mule/core"

 xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.mulesoft.org/schema/mule/core

http://www.mulesoft.org/schema/mule/core/current/mule.xsd

http://www.mulesoft.org/schema/mule/email

http://www.mulesoft.org/schema/mule/email/current/mule-email.xsd

http://www.mulesoft.org/schema/mule/tls http://www.mulesoft.org/schema/mule/tls/current/mule-

tls.xsd">

 <email:smtp-config name="Email_SMTP" >

 <email:smtps-connection host="pop.gmail.com" port="995"

user="user1@domain.com" password="passwordvalue" >

 <tls:context enabledProtocols="TLSv1.2,SSLv3" >

 <tls:trust-store path="aTruststore.jks" password="changeit"

/>

 <tls:key-store path="aKeystore" password="password" />

 </tls:context>

 </email:smtps-connection>

 </email:smtp-config>

 <flow name="emailconnectorFlow">

 <scheduler>

 <scheduling-strategy >

 <fixed-frequency />

 </scheduling-strategy>

 </scheduler>

 <email:send config-ref="Email_SMTP" fromAddress="user1@domain.com"

subject="IMPORTANT!">

 <email:to-addresses >

 <email:to-address value="user3@domain.com" />

 <email:to-address value="user2@domain.com" />

 </email:to-addresses>

 <email:body contentType="text/html" >

17

 <email:content ><![CDATA["<h1>Hello this is an

important message</h1>"]]></email:content>

 </email:body>

 </email:send>

 </flow>

</mule>

4.11 Send an Attachment

The following example illustrates how to send emails and attachments over the SMTP server.

Use DataWeave to manage the attachments. The flow reads a JSON file using the File

Connector Read operation and then uses the Email Connector Send operation to send the

content of the file as an attachment:

The following screenshot shows the Anypoint Studio app flow for this example:

Figure 4.6 Email Connector Send attachments over SMTP

To create the flow:

1. Create a new Mule project in Studio.

2. In the Mule Palette view, select the Scheduler component and drag it onto the canvas.

The source initiates a flow when a time-based condition is met.

3. Drag the File Connector Read operation to the right of the Scheduler component.

4. Set the File Path field to file.json .

5. Drag the Send operation to the right of the Read operation.

6. On the Send configuration screen, click the plus sign (+) next to the Connector

configuration field to configure a global element for the operation.

7. In the Connection field, select SMTP Connection.

8. In the General tab, enter the following values:

18

o Host

pop.gmail.com

o Port

995

o User

user1@domain.com

o Password

password

9. Click OK.

10. In the Send operation configuration screen, set the To addresses field to Edit inline .

11. Click the plus sign (+) to add a new email Value as example@domain.com .

12. Set the Subject field to Attachment test .

13. Set the Content field to "<h1>Hello this is an important message</h1>" .

14. In the Attachments field, enter the following DataWeave expression as a new attachment

element:

15. {

16. 'json-attachment' : payload

}

Note that payload is the content of the JSON file read by the File Connector Read operation.

17. Save and run the app.

The following screenshot shows the Send operation configuration:

19

Figure 4.7 Email Send Attachment operation configuration

4.12 Send Multiple Attachments

The following example illustrates how to send emails and multiple attachments over the

SMTP server. The flow initiates with a Scheduler component. Then, Set

Variable components define each attachment media type JSON, text and file. Subsequently,

the Email Connector Send operation sends the attachments in the email, after which you the

result message using a Logger component.

The following screenshot shows the Anypoint Studio app flow for this example:

Figure 4.8 Email Connector Multiple attachments

To create the flow:

1. Create a new Mule project in Studio.

20

2. In the Mule Palette view, select the Scheduler component and drag it onto the canvas.

The source initiates a flow when a time-based condition is met and sends the emails.

3. Drag a Set Variable component to the right of the Scheduler component.

4. In the Set Variable configuration screen, set the following parameters:

o Name

json

o Value

output application/json --- {address: '221B Baker Street'}

o MIME Type

application/json

5. Drag another Set Variable component to the right of the first Set Variable component,

and set the following parameters:

o Name

textPlain

o Value

This is the email text attachment for John Watson

o MIME Type

text/plain

6. Drag another Set Variable component to the right of the second Set

Variable component, and set the following parameters:

o Name

octectStream

o Value

vars.textPlain

o MIME Type

application/octet-stream

7. Drag the Email Send operation to the right of the third Set Variable component.

21

8. On the Send configuration screen, click the plus sign (+) next to the Connector

configuration field to configure a global element for the operation.

9. In the Connection field, select SMTP Connection.

10. In the General tab, enter the following values:

o Host

pop.gmail.com

o Port

995

o User

user1@domain.com

o Password

password

11. Click OK.

12. In the Send operation configuration screen, set the To addresses field to Edit inline

13. Click the plus sign (+) to add a new email Value as user4@domain.com .

14. Set the Content field to Email Content and the ContentType field to text/plain .

15. In the Attachments field, enter the following DataWeave expression:

16. {

17. 'text-attachment' : vars.textPlain,

18. 'json-attachment' : vars.json,

19. 'stream-attachment' : vars.octetStream

 }

20. Save and run the app.

The following screenshot shows the Send operation configuration:

22

Figure 4.9 Email Send Multiple Attachment configuration

XML for Sending Multiple Attachments

Paste this code into the Studio XML editor to quickly load the flow for this example into your

Mule app:

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:email="http://www.mulesoft.org/schema/mule/email"

 xmlns="http://www.mulesoft.org/schema/mule/core"

xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

http://www.mulesoft.org/schema/mule/email

http://www.mulesoft.org/schema/mule/email/current/mule-email.xsd

http://www.mulesoft.org/schema/mule/core

http://www.mulesoft.org/schema/mule/core/current/mule.xsd">

 <email:smtp-config name="Email_SMTP">

 <email:smtp-connection host="pop.gmail.com" port="995"

user="user1@domain.com" password="password" />

23

 </email:smtp-config>

 <flow name="emailattachFlow">

 <scheduler>

 <scheduling-strategy >

 <fixed-frequency />

 </scheduling-strategy>

 </scheduler>

 <set-variable value="#[output application/json --- {address: '221B Baker

Street'}]" variableName="json" mimeType="application/json"/>

 <set-variable value="This is the email text attachment for John Watson"

variableName="textPlain" mimeType="text/plain"/>

 <set-variable value="#[vars.textPlain]" variableName="octetStream"

mimeType="application/octet-stream"/>

 <email:send config-ref="config">

 <email:to-addresses >

 <email:to-address value="user4@domain.com" />

 </email:to-addresses>

 <email:body contentType="text/plain" >

 <email:content>Email Content</email:content>

 </email:body>

 <email:attachments>#[{

 'text-attachment' : vars.textPlain,

 'json-attachment' : vars.json,

 'stream-attachment' : vars.octetStream

 }]</email:attachments>

 </email:send>

 <logger level="INFO" doc:name="Logger" message="#['Message Id ' ++

correlationId as String]"/>

 </flow>

</mule>

24

4.13 Connect to Gmail with Email Connector Examples - Mule 4

To connect Anypoint Connector for Email (Email Connector) to your Gmail account,

enable Less Secure Apps in your account and configure a global element for the server

connection IMAPS, POP3S, or SMTPS you want to use.

Enable Less Secure Apps in Your Gmail Account

Google might block third-party mail clients if you do not enable the Less Secure

Apps setting for your Gmail account, because Google blocks any apps that are not using

security protocols that Google deems mandatory unless you allow less secure apps to access

your Gmail account.

When you try to connect to your Gmail for the first time, you will receive an email with a link

for enabling less secure apps in your Gmail account.

Figure 4.10 Email connector example

25

Chapter 5 Conclusion And Future Scope

5.1 Conclusion

Underlying all IT architectures are core systems of records that are often not readily available

due to its complexity and connectivity concerns. System APIs provide a means of hiding that

complexity from the user while exposing data and providing downstream insulation from any

interface changes or rationalization of those systems. This API provides an implementation best

practice for a notification service that integrates with multiple systems like Gmail and Twilio

and exposes a RESTful interface that triggers a notification.

5.2 Future Scope

A MuleSoft Developer is familiar with end-to-end integration solutions designing and

development. With Mule being included in Salesforce ecosystem, a significant growth can be

seen. But all tool-based solutions have high chances of being replaced in few years. Also, there

is a lot of scope of learning and growth with associated systems. It is easier for a person with

said qualifications to work on any integrations.

26

References

MuleSoft Documentation-

 https://docs.mulesoft.com/general/

YouTube Reference

https://www.youtube.com/watch?v=taxnRe2FXRY&t=186s

About MuleSoft and Training

https://training.mulesoft.com/

https://www.mulesoft.com/about

https://docs.mulesoft.com/general/
https://www.youtube.com/watch?v=taxnRe2FXRY&t=186s
https://training.mulesoft.com/

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

