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ABSTRACT

This project is about visualizing different parsers. It is based on IS, ITTML. and CSS. Occasionally it makes

use of a visualization library d3.js. Main objective of this project is to assist in understanding of parser. [t

can generate first set. follow set, predictive parsing table. and L. (1) parser to name a few. This can also
help one save on time. Repetitive and time-consuming things such as constructing predictive parsing table

can be done with project, saving user time and also reducing chance of mistakes.

Keyword: Parser, first set, follow set. Top-down parsing. Bottom-up parsing, Visualization.
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CHAPTER 1: PROJECT OVERVIEW

1.1 Introduction

This project is based on HTML, JS, and CSS. It does make use of some additional JS library (such as d3.js)
though. This is project is about visualizing parsers. It visualizes both top-down, and bottom-up parser.
There’s also an option to compute first set, and follow set for a given grammar.

JS library d3 js is used for visualizing parse tree, and canonical items graph.

1.2 Objective and Scopes
The main objective of this project is to help visualize parsers, which are tricky to understand. Visualization

may help in better understanding parsers.

It can compute a few procedures required for a parser (like, first set and follow set), this can save time as one

doesn't have to do redundant things again and again.

1.3 Project Features

1. Evaluating first set and follow set

2. Visualizing LL (1) parser

3. Visualizing Recursive descent parser

4, Visualizing LR (0) parser

1.4 System requirements

This project is based on JS, HTML, and CSS. Most modern browsers are able to run this without any issues.
Some browsers such as Internet Explorer 9 won’t be able to run it.

Any web browser which supports ES2015 version of JS, CSS version 2.1, and HTML version 5 will be able
to run it.

Some part of this project makes use of a JS library named d3.js, since it is a graphical library, it’ll require the

system to sufficient amount of memory and computation power, Older mobile phones may not be able to run

this
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CHAPTER 2: PRELIMINARY DESIGN

2.1 Introduction

This chapter contains algorithms used in this project. They are here written in just few lines however they are
very lengthy if one has to implement. Especially when an optimized version is expected to written.
Algorithms are the major part of this project. In fact, that’s where most time is spent.

Memorization makes program lengthy but at the end it improves algorithm’s performance largely due to fact

some algorithm here uses recursion.

2.2 Algorithm for Top-down parsing

It constructs parse tree from the top and the input is read from left to right.

2.2.1 First set

First set is required to construct predictive parsing table. First of a symbol X is the set of terminals that begin

with all string derived from X.

Algorithm: First (X)

first_set  empty
if x is empty return first_set
if X is not a terminal
insert x in first_set then return first_set
else
look for left most symbol in each production rules for X
for each symbol
if not contain epsilon
add in first_set
else
add first of symbol just next to it in first_set
return set

2.2.2 Follow set

Follow set is required to construct predictive parsing table. Follow of a symbol X is the set of terminals that
appear just after right of non-terminal X.

In this algorithm infinite recursion can be easily overlooked. Even with valid input we can make this
algorithm call itself forever. We’ve to make sure with the us of lookup table that this algorithm won’t call

itself over and over.
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2.2.2 Follow set (continued)

Algorithm: Follow (X)

follow_set empty
if X is start symbol
insert $ in follow_set

for occurrence (y) of X in rhs of every production rules
if'y is non terminal other than epsilon
insert y in follow_set
else if y is a terminal
if follow of y doesn’t contain epsilon
insert follow of y in follow_set
else
insert everything other than epsilon in follow_sct
insert follow (rhs) in the follow_set

insert follow of y in follow_set

return follow_set

2.2.3 Predictive parsing table

Predictive parsing table is required by LL (1) parser. Follow set and first set are frequently required by this
algorithm to construct the table. It’s better to precompute them and cache them for this algorithm to use. We

can use hash table to store our computation. Hash table provide us constant time insertion, and access. Only

two methods we care about.

This algorithm assumes there is no left recursion in the grammar.

Algorithm: predictieParseTable (G)

table # a 2D array
insert each non-terminal in each column
insert each terminal in first column of each row

# Filling the table
for every production rule (pr) in grammar’s rules
if first of prrhs doesn’t contains an epsilon
for each non-terminal in first prrhs
fill prin table, row is pr rhs and column is non-terminal
in case of a conflict return false # multiple entries
else if follow of pr rhs contains §
for each non-terminal in follow of pr rhs
fill prin table, row is pr rhs and column is non-terminal
in case of a conflict return false # multiple entries
else
fill prin table, row is pr rhs and column is $
in case of a conflict return false # multiple entries
return table
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2.24 LL (1) parser

Predictive parsing table is required by LL (1) parser. Algorithm expects that there’s no conflict in predictive
parsing table, i.e., grammar is accepted by LL (1) parser.

It makes use of a stack. If at end both remaining element and stack is empty, then the string is accepted by

the parser. Otherwise not.

We’ve to augment stack with the start symbol, and string that has to be parse with a *$".

R E——————

Algorithm: LL_1_parser (string, Table, start_symbol)

stack  start_symbol # represent push
in string append *$’ at end

until stack is not empty
if string is empty
return false

o e —

if stack top is string top
pop stack
remove front of string
continue loop

e o

rule  table [stack top] [string top]
pop stack
stack  rule’s rhs

if string is empty
return true

return false

R P R Ty W e s .

s ———
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2.2.5 Recursive descent parser

This parser makes use of backtracking.

Algorithm: recursiveDescentParsing(Grammar, Token)

descent_pointer 0
stack ~ Grammar.start_symbol

while stack is not empty
if stack.top is a non-terminal
top  stack.top
stack.pop
insert production rule whose rhs is top
remove that production rule from Grammar
else
if stack.top is token[descent_pointer]
stack.pop
increment descent_pointer
else
backtrack

if descent_pointer is token’s size
return true
return false
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2.3 Algorithm for Bottom-up parsing

It constructs a parse tree from the bottom and the input is read from right to left.

2.3.1 Constructing canonical items
Canonical items are represented by a directed, labelled graph. We use Breadth First Search for construction

of this.

Algorithm: canonicalltems(Grammar)

items empty # divected, labelled graph
insert S . StartSymbol in Grammar.production_rules
queue S’

while queue is not empty
state  queue.top
# Construct canonical item
Look in rhs. for each period
if on right of period is non-terminal
insert rule in state with a period on rhs
queue.pop

Look in rhs, for each period
move the period
push into queue state, right of period

insert state into items

return items
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CHAPTER 3: FINALANALYSIS

3.1 Results
This project’s program is working as expected for valid inputs. However, rarely it doesn’t work as
anticipated. This happens when wrong input is provided to it (such as incorrect grammar, or grammar having

left recursion).

3.2 Result analysis
3.2

1. Computing first and follow set

T Firstand Follow

Using grammar -

EERR

g - %8
T (.l )8
T +)S
F (e L

Figure 3.2.1. Web page displayving first set and follow set

This web page is opened when a user input grammar in homepage and click “First and Follow™ button. User

here has nothing to input, all they can do is see the table. If compute the set for different grammar they’ll

have to go back to homepage.

First set and follow set are computed as expected for multiple grammar which we’ve tried. However, for

grammar containing left recursion, it won’t work. Our algorithm expects grammar without any left recursion.

User are expected to remove left recursion if there’s any.
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3.2.2. LL (1) parser
3.2.2.1 Predictive parsing table
L.1(1) parser

/
Usinz grammar -

E-TE'
E' > + TE'
E' = ¢
T=FT'
TR
L -
F-&(E)
F - id

Predictive Parsing table :

E—TE S E-TE
E—=TE E—t

T—FT T—FT
T—¢ T—"FT IFi=iE

F—(E) F—ud

Figure 3.2.2.1. Web page showing Predictive parsing table

Predictive parsing table is computed as per the algorithm described in section 4.2.3, it assumes first and

follow set are calculated before head.

This is tested for multiple grammar, and it was working for all of them. In case of a conflict, conflicted cell is

shown as red.

e T T R e —
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3.2.2.2 Parsing using LL (1)

Parsing :

Enter tokens seperated by comma : id b ;

R Y = e s ey T g v T N &

$.E\T d$ E—-TE

SETF id$ T—FT

SETid id$ F—id

$.ET S Match id

S.E' $ T—¢

$ $ E'—e¢
Match $§

Figure 3.2.2.2. Web page showing steps taken to parse given string
1t°1l generate this table as explained in the algorithm in Section 2.2.4.

At the end if stack and remaining is empty. then string is accepted else it’s not.

Bedd B fouse L mepa n g
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3.2.2.3 Parse tree

Parse tree -

/{, -
{T
AN
/ TN .
’ ",
o ~
F T
i
‘ i
id is

Figure 3.2.2.3. Web page showing parse tree for a given string

Parse tree here is generated using d3.js library.

3.2.3. LR (0) parser

Canonical Items

(6
3" T
o
. 1D
oy
’ &
(4 '
o
if )

Figure 3.2.3. Web page showing canonical items
g pag £
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3.3 Problem faced

3.3.1. Tricky algorithms

Algorithms used for alimost anything is this project was tricky for us. They are trickier to come up with. Even
the naive ones.

Stack, hash table, array, and graph are some data structures used. Backtracking, recursion, and graph search
(DFS) are frequently used. Implementing all of them in a programming language which was completely new

to us is somewhat of a challenge.

3.3.2. Lengthy JS programs

IS programs were lengthy. That makes them trickier to maintain and work on.

It was largely due to fact JS was doing so much. It generates html table, draw graphs/trec (o name a few.
Every computation is done in JS. HTML, and CSS aren’t programming language.

HTML, and CSS aren’t heavily used. Front end of this looks very basic due to this.

3.4 Applications
3.4.1. Learning different parsers
With this project one is able to visualize different parsers. They'll be able to understand parser better. This

project visualizes LL (1), LR (0), and recursive descent parser.

3.4.2. Saving time
Sometimes repetition just costs us time without us gaining anything fromit. Those who're learning LL (1)
would find computing the first set and follow set over and over again annoying. They can use this project to

compute first and follow set, and save them some time.

They can also do the same about predictive parsing table, and canonical items.

3.4.3. Verifying answers

Users can use this project to verify their answer. They can do so for the first set, follow set. predictive

parsing table, and LL (1) parser to name.a few.

11
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CHAPTER 4: CONCLUSION

4.1 Conclusion

We've implemented different types of parsers, and added some visualization to it. [C1 help one in
understanding the working of parsers. It'll save time as one doesn't have to compute first and follow set.

predictive parse table. and canonical items.

4.2 Future scope
We can add more types of parsers to this project such as LALR.

We can also add more visualization such as step by step computation as per algorithms.
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