B 303 dddd b bl ldddddildddddddddIIIISISSId

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Project Report

on

Parser Visualizer

Submitted By:
Tanishq Soni
0901CS191129
Vishal Prajapati
0901CS191137

Faculty Mentor:
Dr. Anjula Mehto

Assistant Professor, Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

Scanned with CamScanner

883848383438 d338dddJdJdddidddIdddd I/ T ¢

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Project Report

on
Parser Visualizer

A project report submitted in partial fulfilment of the requirement for the degree of
BACHELOR OF TECHNOLOGY
in
COMPUTER SCIENCE AND ENGINEERING
Submitted by:

Tanishq Soni
0901CS191129
Vishal Prajapati
0901CS191137

Faculty Mentor:

Dr. Anjula Mehto
Assistant Professor, Computer Science and Engineering

Submitted to:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

Scanned with CamScanner

900 ¢ s ddIIGdeeddIdel IV T

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that Tanishq Soni (0901CS191129) has submitted the project report titled Parser
Visualizer under the mentorship of Dr. Anjula Mehto in partial fulfilment of the requirement for
the award of degree of Bachelor of Technology in Computer Science and Engineering from Madhav
Institute of Technology and Science, Gwalior.

s g

Dr. Anjula Mchto Dr. Manish Dixit
Faculty Mentor Professor and Head,
Assistant Professor Computer Science and Engineering
Computer Science and Engineering : P
P RASEE Dr. Manish Dixit
Professor & HoD
artment of CSE
M.LTS. Gwatiar
1

Scanned with CamScanner

A ddblliddddilddddilddddddee s’

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that Vishal Prajapati (0901CS191137) has submitted the project report titled Parser
Visualizer under the mentorship of Dr. Anjula Mehto in partial fulfilment of the requirement for the
award of degree of Bachelor of Technology in Computer Science and Engineering from Madhav
Institute of Technology and Science, Gwalior.

R R

Dr. Anjula Mechto Dr. Manish Dixit

Faculty Mentor Professor and Head,
Assistant Professor Computer SCIGI]CL and D!”lf CRLING: .
Computer Science and Engineering fagnisn L R

Professor g DD
Departmem OT Lok
M.LT.S. Guahier

I

Scanned with CamScanner

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

DECLARATION

I hereby declare that the work being presented in this project report, for the partial fuifilment of
requirement for the award of the degree of Bachelor of Technology in Computer Science and
Engineering at Madhav Institute of Technology & Science, Gwalior is an authenticated and original
record of my work under the mentorship of Dr. Anjula Mehto, Assistant Professor, Computer
Science and Engineering.

I declare that I have not submitted the matter embodied in this report for the award of any degree or

diploma anywhere else.

Tanishq Soni
0901CS191129
3" Year,
Computer Science and Engineering

Qv

Vishal Prajapati
0901CS191137
3" Year,
Computer Science and Engineering

Scanned with CamScanner

MR AN RS2 Al R A R E N N N E N NN NSNS AAEESSEs

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. [am thankful to my institute, Madhav
Institute of Technology and Science to allow me to continue my disciplinary/interdisciplinary project as a
curriculum requirement, under the provisions of the Flexible Curriculum Scheme (based on the AICTE Model
Curriculum 2018), approved by the Academic Council of the institute. I extend my gratitude to the Director
of the institute, Dr. R. K. Pandit and Dean Academics, Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Department of Computer Science and Engineering, for
allowing me to explore this project. 1 humbly thank Dr, Manish Dixit, Professor and Head. Department of
Computer Science and Engineering, for his continued support during the course of this engagement, which
eased the process and formalities involved.

[am sincerely thankful to my faculty mentors. | am grateful to the guidance of Dr. Anjula Mchto, Assistant
Professor, Computer Science and Engineering. for his continued support and guidance throughout the
project. [am also very thankful to the faculty and staff of the department.

Tanishq Soni
0901CS191129
3" Year,
Computer Science and Engineering

Vishal Prajapati
0901CS191137
3" Year,
Computer Science and Engineering

111

Scanned with CamScanner

Ny
>
S
>
>
<
>
o
Ry
o
"
Ry
o
~
>
e
~
~
~e
=
Lo
~

ABSTRACT

This project is about visualizing different parsers. It is based on IS, ITTML. and CSS. Occasionally it makes

use of a visualization library d3.js. Main objective of this project is to assist in understanding of parser. [t

can generate first set. follow set, predictive parsing table. and L. (1) parser to name a few. This can also
help one save on time. Repetitive and time-consuming things such as constructing predictive parsing table

can be done with project, saving user time and also reducing chance of mistakes.

Keyword: Parser, first set, follow set. Top-down parsing. Bottom-up parsing, Visualization.

1V

Scanned with CamScanner

&L LLLLLL L

LIRS

g e Fafie e A e A B 72 S, rede i HeEe R e &) - 7 P el d3.s
W@u‘mm%tsqqfwmmg@mmﬁmﬁﬁmméluag:amr@ﬁé;ﬁmq%wﬁz,qfﬁﬁﬁz,ﬁ%ﬁaqﬁﬂm
WW(I)WWWW%lﬂ?WWWﬁﬁﬂﬁWﬁm%amﬁhwéﬁawﬁiﬂﬁéﬁﬁﬁﬂﬁwmwﬁﬂ
myﬁﬁwm%mﬁﬁmmmaWﬁ:mzﬁrmzﬁ%aﬁtmﬁﬁﬁ%vﬁmﬁnﬁ%l

Scanned with CamScanner

S ol o

ATl < ——

.
>
.
N
N
N
N
N
S
D
e
e
~9
~
e
N
~
e
~
~e
—
o 3
=

Vi

TABLE OF CONTENTS

TITLE

Abstract

X

List of figures
CHAPTER 1: INTRODUCTION

1.1 Introduction

1.2 Objective and Scope
1.3 Project and Features
1.4 System Requirements

CHAPTER 2: PRELIMINARY DESIGN

2.1 Introduction
2.2 Algorithm for Top-down parsing
2.2.1 First set
2.2.2 Follow set
2.2.3 Predictive Parsing table
2.2.4 LL (1) parser
2.2.5 Recursive descent parser
2.3 Algorithm for Bottom-up parsing
2.3.1 Constructing Canonical Items

CHAPTER 3: FINAL ANALYSIS

3.1 Result
3.2 Result analysis
3.2.1 Computing first and follow sets
3.2.2 LL(I) parser
3.2.2.1 Predictive parsing table
3.2.2.2 Parsing using LL(1)
3.2.2.3 Parse tree
3.2.3 LR(0) parser
3.3 Problem faced
Vi

PAGE NO.

Y

VIII

2-6

(3]

[SO T N

(NS

UJ

N

6

7-11

oo e~ N

O

10
10

Scanned with CamScanner

3.3.1 Tricky algorithms 1
3.3.2 Lengthy IS programs I
3.4 Application I
3.4.1 Learning difterent parsers I
3.4.2 Saving time Il
3.4.3 Verifying answers 1
CHAPTER 4: CONCLUSION 12
3.1 Conclusion 12
3.2 Future scope 12
. REFRENCES o
b VII
8
bt
i
4

Scanned with CamScanner

e
«
4

Figure Number

1

89

(98]

LIST OF FIGURES

Figure caption Page No.

Web page displaying first set and follow set 7
Web page showing Predictive parsing table 3
Web page showing steps taken to parse given string 9
Web page showing parse tree for a given string 10
10

Web page showing canonical items

VIl

Scanned with CamScanner

A T S Sy .

CHAPTER 1: PROJECT OVERVIEW

1.1 Introduction

This project is based on HTML, JS, and CSS. It does make use of some additional JS library (such as d3.js)
though. This is project is about visualizing parsers. It visualizes both top-down, and bottom-up parser.
There’s also an option to compute first set, and follow set for a given grammar.

JS library d3 js is used for visualizing parse tree, and canonical items graph.

1.2 Objective and Scopes
The main objective of this project is to help visualize parsers, which are tricky to understand. Visualization

may help in better understanding parsers.

It can compute a few procedures required for a parser (like, first set and follow set), this can save time as one

doesn't have to do redundant things again and again.

1.3 Project Features

1. Evaluating first set and follow set

2. Visualizing LL (1) parser

3. Visualizing Recursive descent parser

4, Visualizing LR (0) parser

1.4 System requirements

This project is based on JS, HTML, and CSS. Most modern browsers are able to run this without any issues.
Some browsers such as Internet Explorer 9 won’t be able to run it.

Any web browser which supports ES2015 version of JS, CSS version 2.1, and HTML version 5 will be able
to run it.

Some part of this project makes use of a JS library named d3.js, since it is a graphical library, it’ll require the

system to sufficient amount of memory and computation power, Older mobile phones may not be able to run

this

Scanned with CamScanner

-

Coc il e

52 R M . 2 W

CHAPTER 2: PRELIMINARY DESIGN

2.1 Introduction

This chapter contains algorithms used in this project. They are here written in just few lines however they are
very lengthy if one has to implement. Especially when an optimized version is expected to written.
Algorithms are the major part of this project. In fact, that’s where most time is spent.

Memorization makes program lengthy but at the end it improves algorithm’s performance largely due to fact

some algorithm here uses recursion.

2.2 Algorithm for Top-down parsing

It constructs parse tree from the top and the input is read from left to right.

2.2.1 First set

First set is required to construct predictive parsing table. First of a symbol X is the set of terminals that begin

with all string derived from X.

Algorithm: First (X)

first_set empty
if x is empty return first_set
if X is not a terminal
insert x in first_set then return first_set
else
look for left most symbol in each production rules for X
for each symbol
if not contain epsilon
add in first_set
else
add first of symbol just next to it in first_set
return set

2.2.2 Follow set

Follow set is required to construct predictive parsing table. Follow of a symbol X is the set of terminals that
appear just after right of non-terminal X.

In this algorithm infinite recursion can be easily overlooked. Even with valid input we can make this
algorithm call itself forever. We’ve to make sure with the us of lookup table that this algorithm won’t call

itself over and over.

Scanned with CamScanner

TR TIPS W PR TN

o

~* 1% yeowTET

2.2.2 Follow set (continued)

Algorithm: Follow (X)

follow_set empty
if X is start symbol
insert $ in follow_set

for occurrence (y) of X in rhs of every production rules
if'y is non terminal other than epsilon
insert y in follow_set
else if y is a terminal
if follow of y doesn’t contain epsilon
insert follow of y in follow_set
else
insert everything other than epsilon in follow_sct
insert follow (rhs) in the follow_set

insert follow of y in follow_set

return follow_set

2.2.3 Predictive parsing table

Predictive parsing table is required by LL (1) parser. Follow set and first set are frequently required by this
algorithm to construct the table. It’s better to precompute them and cache them for this algorithm to use. We

can use hash table to store our computation. Hash table provide us constant time insertion, and access. Only

two methods we care about.

This algorithm assumes there is no left recursion in the grammar.

Algorithm: predictieParseTable (G)

table # a 2D array
insert each non-terminal in each column
insert each terminal in first column of each row

Filling the table
for every production rule (pr) in grammar’s rules
if first of prrhs doesn’t contains an epsilon
for each non-terminal in first prrhs
fill prin table, row is pr rhs and column is non-terminal
in case of a conflict return false # multiple entries
else if follow of pr rhs contains §
for each non-terminal in follow of pr rhs
fill prin table, row is pr rhs and column is non-terminal
in case of a conflict return false # multiple entries
else
fill prin table, row is pr rhs and column is $
in case of a conflict return false # multiple entries
return table

Scanned with CamScanner

TEP R

¥ -

g

=y

S

2.24 LL (1) parser

Predictive parsing table is required by LL (1) parser. Algorithm expects that there’s no conflict in predictive
parsing table, i.e., grammar is accepted by LL (1) parser.

It makes use of a stack. If at end both remaining element and stack is empty, then the string is accepted by

the parser. Otherwise not.

We’ve to augment stack with the start symbol, and string that has to be parse with a *$".

R E——————

Algorithm: LL_1_parser (string, Table, start_symbol)

stack start_symbol # represent push
in string append *$’ at end

until stack is not empty
if string is empty
return false

o e —

if stack top is string top
pop stack
remove front of string
continue loop

e o

rule table [stack top] [string top]
pop stack
stack rule’s rhs

if string is empty
return true

return false

R P R Ty W e s .

s ———

Scanned with CamScanner

2.2.5 Recursive descent parser

This parser makes use of backtracking.

Algorithm: recursiveDescentParsing(Grammar, Token)

descent_pointer 0
stack ~ Grammar.start_symbol

while stack is not empty
if stack.top is a non-terminal
top stack.top
stack.pop
insert production rule whose rhs is top
remove that production rule from Grammar
else
if stack.top is token[descent_pointer]
stack.pop
increment descent_pointer
else
backtrack

if descent_pointer is token’s size
return true
return false

Scanned with CamScanner

T T e o e e —————

Sadnls

T T T T AR

T

2.3 Algorithm for Bottom-up parsing

It constructs a parse tree from the bottom and the input is read from right to left.

2.3.1 Constructing canonical items
Canonical items are represented by a directed, labelled graph. We use Breadth First Search for construction

of this.

Algorithm: canonicalltems(Grammar)

items empty # divected, labelled graph
insert S . StartSymbol in Grammar.production_rules
queue S’

while queue is not empty
state queue.top
Construct canonical item
Look in rhs. for each period
if on right of period is non-terminal
insert rule in state with a period on rhs
queue.pop

Look in rhs, for each period
move the period
push into queue state, right of period

insert state into items

return items

Scanned with CamScanner

CHAPTER 3: FINALANALYSIS

3.1 Results
This project’s program is working as expected for valid inputs. However, rarely it doesn’t work as
anticipated. This happens when wrong input is provided to it (such as incorrect grammar, or grammar having

left recursion).

3.2 Result analysis
3.2

1. Computing first and follow set

T Firstand Follow

Using grammar -

EERR

g - %8
T (.l)8
T +)S
F (e L

Figure 3.2.1. Web page displayving first set and follow set

This web page is opened when a user input grammar in homepage and click “First and Follow™ button. User

here has nothing to input, all they can do is see the table. If compute the set for different grammar they’ll

have to go back to homepage.

First set and follow set are computed as expected for multiple grammar which we’ve tried. However, for

grammar containing left recursion, it won’t work. Our algorithm expects grammar without any left recursion.

User are expected to remove left recursion if there’s any.

Scanned with CamScanner

o i .

- v

3.2.2. LL (1) parser
3.2.2.1 Predictive parsing table
L.1(1) parser

/
Usinz grammar -

E-TE'
E' > + TE'
E' = ¢
T=FT'
TR
L -
F-&(E)
F - id

Predictive Parsing table :

E—TE S E-TE
E—=TE E—t

T—FT T—FT
T—¢ T—"FT IFi=iE

F—(E) F—ud

Figure 3.2.2.1. Web page showing Predictive parsing table

Predictive parsing table is computed as per the algorithm described in section 4.2.3, it assumes first and

follow set are calculated before head.

This is tested for multiple grammar, and it was working for all of them. In case of a conflict, conflicted cell is

shown as red.

e T T R e —

Scanned with CamScanner

-t

e . . L

e ————————

3.2.2.2 Parsing using LL (1)

Parsing :

Enter tokens seperated by comma : id b ;

R Y = e s ey T g v T N &

$.E\T d$ E—-TE

SETF id$ T—FT

SETid id$ F—id

$.ET S Match id

S.E' $ T—¢

$ $ E'—e¢
Match $§

Figure 3.2.2.2. Web page showing steps taken to parse given string
1t°1l generate this table as explained in the algorithm in Section 2.2.4.

At the end if stack and remaining is empty. then string is accepted else it’s not.

Bedd B fouse L mepa n g

Scanned with CamScanner

3.2.2.3 Parse tree

Parse tree -

/{, -
{T
AN
/ TN .
’ ",
o ~
F T
i
‘ i
id is

Figure 3.2.2.3. Web page showing parse tree for a given string

Parse tree here is generated using d3.js library.

3.2.3. LR (0) parser

Canonical Items

(6
3" T
o
. 1D
oy
’ &
(4 '
o
if)

Figure 3.2.3. Web page showing canonical items
g pag £

Scanned with CamScanner

10

ST Y T T R R T e ey, W O T T T R —

o

S b e

TIFT e

3.3 Problem faced

3.3.1. Tricky algorithms

Algorithms used for alimost anything is this project was tricky for us. They are trickier to come up with. Even
the naive ones.

Stack, hash table, array, and graph are some data structures used. Backtracking, recursion, and graph search
(DFS) are frequently used. Implementing all of them in a programming language which was completely new

to us is somewhat of a challenge.

3.3.2. Lengthy JS programs

IS programs were lengthy. That makes them trickier to maintain and work on.

It was largely due to fact JS was doing so much. It generates html table, draw graphs/trec (o name a few.
Every computation is done in JS. HTML, and CSS aren’t programming language.

HTML, and CSS aren’t heavily used. Front end of this looks very basic due to this.

3.4 Applications
3.4.1. Learning different parsers
With this project one is able to visualize different parsers. They'll be able to understand parser better. This

project visualizes LL (1), LR (0), and recursive descent parser.

3.4.2. Saving time
Sometimes repetition just costs us time without us gaining anything fromit. Those who're learning LL (1)
would find computing the first set and follow set over and over again annoying. They can use this project to

compute first and follow set, and save them some time.

They can also do the same about predictive parsing table, and canonical items.

3.4.3. Verifying answers

Users can use this project to verify their answer. They can do so for the first set, follow set. predictive

parsing table, and LL (1) parser to name.a few.

11

Scanned with CamScanner

E
|
|

L2 L SUAG M gl 30 g pep a2

i co®:

CHAPTER 4: CONCLUSION

4.1 Conclusion

We've implemented different types of parsers, and added some visualization to it. [C1 help one in
understanding the working of parsers. It'll save time as one doesn't have to compute first and follow set.

predictive parse table. and canonical items.

4.2 Future scope
We can add more types of parsers to this project such as LALR.

We can also add more visualization such as step by step computation as per algorithms.

Scanned with CamScanner

12

T

B T e

W

L ————— e g T

v

R T TP, P e T T

REFERENCES

1. LL Parsers (https://en.wikipedia.org/wiki/Ll, parser)
2. Recursive descent parser (https://en.wikipedia.ore/wiki/Recursive descent parser)
3. LR Parser (https://en.wikipedia org/wiki/LR_parser)

4. Javascript references (https://developer.mozilla.ore/en-US/docs/Mozilla/Add-ons/WebExtensions/API)
5. d3.js documentation (https://github.com/d3/d3/wiki)

6. HTML references (hitps://developer.mozilla.org‘en-US/docs/Wel/HTMI /Reference) o

7. Aho Alfred V. and Jeffery D Ullman (2002). Principles of Compiler Design, Narosa Publishing House

Scanned with CamScanner

13

