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Abstract 
 

 

Minimum Cost Graph is a approach to connect each node with every other node and similarly 

for the other N nodes but in the worst case the time complexity will be NN. 

 

The other way is to find the cost of every pair of vertices with the Euclidean distance 

 

The task is to connect the graph such that every node has a path from any node with minimum 

cost. 

 

A directed graph, which may contain cycles, where every edge has weight, the task is to find 

the minimum cost of any simple path from a given source vertex ‘s’ to a given destination 

vertex ‘t’. Simple Path is the path from one vertex to another such that no vertex is visited 

more than once. If there is no simple path possible then return INF(infinite). 
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Minimum Cost Graph 

 

Input: N = 3, edges [] [] = {{1, 1}, {1, 1}, {2, 2}, {3, 2}} 

Output: 1.41421 

 

 

Since (2, 2) and (2, 3) are already connected. 

So we try to connect either (1, 1) with (2, 2) 

or (1, 1) with (2, 3) but (1, 1) with (2, 2) yields the minimum cost. 

 

Input: N = 3, edge [] [] = {{1, 1}, {2, 2}, {3, 3}} 

Output: 2.82843 
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#include <bits/stdc++.h> 

usingnamespacestd; 

const int N = 500 + 10; 

int arr[N], sz[N]; 

void initialize() 

{ 

for(int i = 1; i< N; ++i) { 

arr[i] = i; 

sz[i] = 1; 

} 

} 

 

 

Approach 

 

The brute force approach is to connect each node with every other node and similarly for the 

other N nodes but in the worst case the time complexity will be NN. 

The other way is to find the cost of every pair of vertices with the Euclidean distance and 

those pairs which are connected will have the cost as 0. 

After knowing the cost of each pair we will apply the Kruskal Algorithm for the minimum 

spanning tree and it will yield the minimum cost for connecting the graph. Note that for 

Kruskal Algorithm, you have to have the knowledge of Disjoint 

Set Union (DSU). 

 

 

Below is the implementation of the above approach: 
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int root(int i) 

{ 

while(arr[i] != i) i = 

arr[i]; 

return i; 

} 

 

void Union(int a, int b) 

{ 

a = root(a); b = 

root(b); 

 

if(a != b) { 

if(sz[a] <sz[b]) swap(a, 

b); 

 

sz[a] += sz[b]; arr[b] = a; 

} 

} 

 

double minCost(vector<pair<int, int>>& p) 

{ 

 

 

int n = (int)p.size(); 

 

 

vector<pair<double, pair<int, int>>> cost; 

 

 

for(int i = 0; i < n; ++i) { 

for(int j = 0; j < n; ++j) { 

if( i != j) { 

 

int x = abs(p[i].first - p[j].first) 

+ abs(p[i].second - p[j].second); 

 

 

if(x == 1) { 

cost.push_back({ 0, { i + 1, j + 1 } }); 

cost.push_back({ 0, { j + 1, i + 1 } }); 

} 

else{ 

int a = p[i].first - p[j].first; 

 

 3 



int b = p[i].second - p[j].second; a *= a; 

b *= b; 

double d = sqrt(a + b); 

cost.push_back({ d, { i + 1, j + 1 } }); 

cost.push_back({ d, { j + 1, i + 1 } }); 

} 

} 

} 

} 

 

 

sort(cost.begin(), cost.end()); 

 

 

initialize(); 

 

double ans = 0.00; 

for(auto i : cost) { 

double c = i.first; 

int a = i.second.first; 

int b = i.second.second; 

 

 

if(root(a) != root(b)) { Union(a, b); 

ans += c; 

} 

} 

 

return ans; 

} 

 

int main() 

{ 

 

 

vector<pair<int, int>> points = { 

 

 { 1, 1 }, 

{ 2, 2 }, 

{ 2, 3 } 

};     

 

 

cout<<minCost(points)<<endl; 

cout<< “Satya Singh Chandel – 0901CA211055”; 

return0; 
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}  

 

Output: 

1.41421 

Satya Singh Chandel Enrollment – 0901CA211055  

Time Complexity: O(N*N) 

Auxiliary Space: O(N*N) 
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            SINGLE SOURCE SHORTEST PATH 
 

Given a graph and a source vertex in the graph, find the shortest paths from the source to all 

vertices in the given graph.  

 

Examples: 

Input: src = 0, the graph is shown below.  

Source to all  vertices in the given graph. 
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Output: 0 4 12 19 21 11 9 8 14 

Explanation: The distance from 0 to 1 = 4. 

The minimum distance from 0 to 2 = 12. 0->1->2 

The minimum distance from 0 to 3 = 19. 0->1->2->3 

The minimum distance from 0 to 4 = 21. 0->7->6->5->4 

The minimum distance from 0 to 5 = 11. 0->7->6->5 

The minimum distance from 0 to 6 = 9. 0->7->6 

The minimum distance from 0 to 7 = 8. 0->7 

The minimum distance from 0 to 8 = 14. 0->1->2->8 

Dijkstra shortest path algorithm using Prim’s Algorithm in O(V2): 

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. 

 

 

 

 

Like Prim’s MST, generate a SPT (shortest path tree) with a given source as a root. Maintain 

two sets, one set contains vertices included in the shortest-path tree, other set includes 

vertices not yet included in the shortest-path tree. At every step of the algorithm, find a 

vertex that is in the other set (set not yet included) and has a minimum distance from the 

source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                    7



Follow the steps below to solve the problem: 

 Create a set sptSet (shortest path tree set) that keeps track of vertices included in 

the shortest-path tree, i.e., whose minimum distance from the source is calculated 

and finalized. Initially, this set is empty. 

 Assign a distance value to all vertices in the input graph. Initialize all distance values 

as INFINITE. Assign the distance value as 0 for the source vertex so that it is 

picked first. 

 While sptSet doesn’t include all vertices 

• Pick a vertex u which is not there in sptSet and has a minimum distance 

value. 

• Include u to sptSet. 

• Then update distance value of all adjacent vertices of u. 

• To update the distance values, iterate through all adjacent vertices. 

• For every adjacent vertex v, if the sum of the distance value of u 

(from source) and weight of edge u-v, is less than the distance value 

of v, then update the distance value of v. 

 

 

 

 

Below is the illustration of the above  approach: 
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To understand the Dijkstra’s Algorithm lets take a graph and find the shortest path from 

source to all nodes. 

Consider below graph and src = 0 

 

       Step 1: 

 

 Now pick the vertex with a minimum distance value. The vertex 0 is picked, include it 

in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update distance values 

of its adjacent vertices. 

 Now pick the vertex with a minimum distance value. The vertex 0 is picked, include it 

in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update distance values 

of its adjacent vertices. 

 Adjacent vertices of 0 are 1 and 7. The distance values of 1 and 7 are updated as 4 and 

8. 

 The following subgraph shows vertices and their distance values, only the 

vertices with finite distance values are shown. The vertices included in SPT are 

shown in green Color. 
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         Step 2: 

 

 Pick the vertex with minimum distance value and not already included in SPT 

(not in sptSET). The vertex 1 is picked and added to sptSet. 

 

 So sptSet now becomes {0, 1}. Update the distance values of adjacent 

vertices of 1. 

 

 The distance value of vertex 2 becomes 12. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: 

 

 Pick the vertex with minimum distance value and not already included in SPT 

(not in sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. 

 

 Update the distance values of adjacent vertices of 7. The distance value of vertex 6 

and 8 becomes finite (15 and 9 respectively). 
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        Step 4: 

 

 Pick the vertex with minimum distance value and not already included in SPT 

(not in sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}. 

 

 Update the distance values of adjacent vertices of 6. The distance value of vertex 5 

and 8 are updated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We repeat the above steps until sptSet includes all vertices of the given graph. Finally, we get 

the following        Shortest Path Tree (SPT). 
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#include <iostream> 

usingnamespacestd; 

#include <limits.h> 

 
#define V 9 

 
int minDistance(int dist[], bool sptSet[]) 

{ 

 
int min = INT_MAX, min_index; 

 
for(intv = 0; v < V; v++) 

if(sptSet[v] == false&&dist[v] <= min) 

min = dist[v], min_index = v; 

 
return min_index; 

} 

 
void printSolution(intdist[]) 

 
cout<<"Vertex \t Distance from Source"<<endl; 

for(inti = 0; i< V; i++) 

cout<<i<<" \t\t\t\t"<<dist[i] <<endl; 

} 

 
void dijkstra(int graph[V][V], int src) 

{ 

int dist[V]; 

i 

 
bool sptSet[V]; 

Below is the implementation of the above approach: 
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for(int i = 0; i< V; i++) 

dist[i] = INT_MAX, sptSet[i] = false; 

 

 

dist[src] = 0; 

 

 

for(intcount = 0; count < V - 1; count++) { 

 

int u = minDistance(dist, sptSet); 

 

 

sptSet[u] = true; 

 

 

for(intv = 0; v < V; v++) 

 

 

if(!sptSet[v] && graph[u][v] 

&&dist[u] != INT_MAX 

&&dist[u] + graph[u][v] <dist[v]) dist[v] = 

dist[u] + graph[u][v]; 

} 

 

printSolution(dist); 

} 

 

int main() 

{ 

 

int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, 

{ 4, 0, 8, 0, 0, 0, 0, 11, 0 }, 

{ 0, 8, 0, 7, 0, 4, 0, 0, 2 }, 

{ 0, 0, 7, 0, 9, 14, 0, 0, 0 }, 

{ 0, 0, 0, 9, 0, 10, 0, 0, 0 }, 

{ 0, 0, 4, 14, 10, 0, 2, 0, 0 }, 

{ 0, 0, 0, 0, 0, 2, 0, 1, 6 }, 

{ 8, 11, 0, 0, 0, 0, 1, 0, 7 }, 

{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; 

        dijkstra(graph, 0); 

cout<< “Satya Singh Chandel Enrollment – 0901CA211055”; 

return 0; 

} 
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Output: 

 

Vertex 

 

 

 

 

Distance from Source 

0 0 

1 4 

2 12 

3 19 

4 21 

5 11 

6 9 

7 8 

8 14 

 

 

Satya Singh Chandel Enrollment – 0901CA211055 

 

Time Complexity: O(V2) 

Auxiliary Space: O(V) 
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