
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV,

Bhopal)

 Skill Based Project report

 on

Minimum Cost Graph & Single Shortest

Path

Submitted By:

Satya Singh Chandel

0901CA211055

Mentor:

Dr. Anshu Chaturvedi

(Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

GWALIOR - 474005 (MP) est. 1957

July-December 2021

 I

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that Satya Singh Chandel (0901CA211055) has submitted the project report

titled Minimum Cost Graph & Single Shortest Path on problem of Data Structure &

Algorithms under the mentorship of Dr. Anshu Chaturvedi as the requirement of skill based

mini project.

Dr. Anshu Chaturvedi

Computer Science and

Engineering

 II

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV ,Bhopal)

DECLARATION

I hereby declare that the work being presented in this project report, for the fulfilment of partial

requirement of the skills based mini project in 2nd year of Master of Computer Application in

Computer Science and Engineering at Madhav Institute of Technology & Science, Gwalior is

an authenticated and original record of my work under the mentorship of Dr. Anshu

Chaturvedi, (Professor), MITS Gwalior.

 I declare that I have not submitted the matter embodied in this report anywhere else.

Satya Singh Chandel

0901CA211055

2021-2023 Year,

Master of Computer Application,

Computer Science and Engineering

 III

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. I am thankful to my institute

,Madhav Institute of Technology and Science to allow me to continue my disciplinary

project. I extend my gratitude to the Director of the institute ,Dr. R. K. Pandit and Dean

Academics ,Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Department of Computer Science and

Engineering, for allowing me to explore this project. I humbly thank Dr. Manish Dixit,

Professor and Head, Department of Computer Science and Engineering, for his continued

support during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty coordinator. I am grateful to the guidance of Dr. Anshu

Chaturvedi, (Professor), Computer Science and Engineering, for her continued support and

guidance throughout the project. I am also very thankful to the faculty and staff of the

department.

SATYA SINGH CHANDEL

0901CA211055
1st Year,

Master of Computer Application,

Computer Science and Engineering

 IV

Abstract

Minimum Cost Graph is a approach to connect each node with every other node and similarly

for the other N nodes but in the worst case the time complexity will be NN.

The other way is to find the cost of every pair of vertices with the Euclidean distance

The task is to connect the graph such that every node has a path from any node with minimum

cost.

A directed graph, which may contain cycles, where every edge has weight, the task is to find

the minimum cost of any simple path from a given source vertex ‘s’ to a given destination

vertex ‘t’. Simple Path is the path from one vertex to another such that no vertex is visited

more than once. If there is no simple path possible then return INF(infinite).

 V

CONTENTS

COVER PAGE………I

CERTIFICATE…….II

DECLARATION……….III

ACKNOWLEDGEMENT………..IV

ABSTRACT………V

CONTENTS…….VI

TITLE PAGE NO.

1 : Introduction…….1

2 : Approach…….2-5

3 : Single Source Shortest Path……………………………………………………………………………………………….6-11

4 :Code Screenshots & Outputs………………………………………………………………………………………………12-14

 VI

Minimum Cost Graph

Input: N = 3, edges [] [] = {{1, 1}, {1, 1}, {2, 2}, {3, 2}}

Output: 1.41421

Since (2, 2) and (2, 3) are already connected.

So we try to connect either (1, 1) with (2, 2)

or (1, 1) with (2, 3) but (1, 1) with (2, 2) yields the minimum cost.

Input: N = 3, edge [] [] = {{1, 1}, {2, 2}, {3, 3}}

Output: 2.82843

 1

#include <bits/stdc++.h>

usingnamespacestd;

const int N = 500 + 10;

int arr[N], sz[N];

void initialize()

{

for(int i = 1; i< N; ++i) {

arr[i] = i;

sz[i] = 1;

}

}

Approach

The brute force approach is to connect each node with every other node and similarly for the

other N nodes but in the worst case the time complexity will be NN.

The other way is to find the cost of every pair of vertices with the Euclidean distance and

those pairs which are connected will have the cost as 0.

After knowing the cost of each pair we will apply the Kruskal Algorithm for the minimum

spanning tree and it will yield the minimum cost for connecting the graph. Note that for

Kruskal Algorithm, you have to have the knowledge of Disjoint

Set Union (DSU).

Below is the implementation of the above approach:

2

int root(int i)

{

while(arr[i] != i) i =

arr[i];

return i;

}

void Union(int a, int b)

{

a = root(a); b =

root(b);

if(a != b) {

if(sz[a] <sz[b]) swap(a,

b);

sz[a] += sz[b]; arr[b] = a;

}

}

double minCost(vector<pair<int, int>>& p)

{

int n = (int)p.size();

vector<pair<double, pair<int, int>>> cost;

for(int i = 0; i < n; ++i) {

for(int j = 0; j < n; ++j) {

if(i != j) {

int x = abs(p[i].first - p[j].first)

+ abs(p[i].second - p[j].second);

if(x == 1) {

cost.push_back({ 0, { i + 1, j + 1 } });

cost.push_back({ 0, { j + 1, i + 1 } });

}

else{

int a = p[i].first - p[j].first;

 3

int b = p[i].second - p[j].second; a *= a;

b *= b;

double d = sqrt(a + b);

cost.push_back({ d, { i + 1, j + 1 } });

cost.push_back({ d, { j + 1, i + 1 } });

}

}

}

}

sort(cost.begin(), cost.end());

initialize();

double ans = 0.00;

for(auto i : cost) {

double c = i.first;

int a = i.second.first;

int b = i.second.second;

if(root(a) != root(b)) { Union(a, b);

ans += c;

}

}

return ans;

}

int main()

{

vector<pair<int, int>> points = {

 { 1, 1 },

{ 2, 2 },

{ 2, 3 }

};

cout<<minCost(points)<<endl;

cout<< “Satya Singh Chandel – 0901CA211055”;

return0;

4

}

Output:

1.41421

Satya Singh Chandel Enrollment – 0901CA211055

Time Complexity: O(N*N)

Auxiliary Space: O(N*N)

 5

 SINGLE SOURCE SHORTEST PATH

Given a graph and a source vertex in the graph, find the shortest paths from the source to all

vertices in the given graph.

Examples:

Input: src = 0, the graph is shown below.

Source to all vertices in the given graph.

 6

Output: 0 4 12 19 21 11 9 8 14

Explanation: The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Dijkstra shortest path algorithm using Prim’s Algorithm in O(V2):

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree.

Like Prim’s MST, generate a SPT (shortest path tree) with a given source as a root. Maintain

two sets, one set contains vertices included in the shortest-path tree, other set includes

vertices not yet included in the shortest-path tree. At every step of the algorithm, find a

vertex that is in the other set (set not yet included) and has a minimum distance from the

source.

 7

Follow the steps below to solve the problem:

 Create a set sptSet (shortest path tree set) that keeps track of vertices included in

the shortest-path tree, i.e., whose minimum distance from the source is calculated

and finalized. Initially, this set is empty.

 Assign a distance value to all vertices in the input graph. Initialize all distance values

as INFINITE. Assign the distance value as 0 for the source vertex so that it is

picked first.

 While sptSet doesn’t include all vertices

• Pick a vertex u which is not there in sptSet and has a minimum distance

value.

• Include u to sptSet.

• Then update distance value of all adjacent vertices of u.

• To update the distance values, iterate through all adjacent vertices.

• For every adjacent vertex v, if the sum of the distance value of u

(from source) and weight of edge u-v, is less than the distance value

of v, then update the distance value of v.

Below is the illustration of the above approach:

 8

To understand the Dijkstra’s Algorithm lets take a graph and find the shortest path from

source to all nodes.

Consider below graph and src = 0

 Step 1:

 Now pick the vertex with a minimum distance value. The vertex 0 is picked, include it

in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update distance values

of its adjacent vertices.

 Now pick the vertex with a minimum distance value. The vertex 0 is picked, include it

in sptSet. So sptSet becomes {0}. After including 0 to sptSet, update distance values

of its adjacent vertices.

 Adjacent vertices of 0 are 1 and 7. The distance values of 1 and 7 are updated as 4 and

8.

 The following subgraph shows vertices and their distance values, only the

vertices with finite distance values are shown. The vertices included in SPT are

shown in green Color.

 9

 Step 2:

 Pick the vertex with minimum distance value and not already included in SPT

(not in sptSET). The vertex 1 is picked and added to sptSet.

 So sptSet now becomes {0, 1}. Update the distance values of adjacent

vertices of 1.

 The distance value of vertex 2 becomes 12.

Step 3:

 Pick the vertex with minimum distance value and not already included in SPT

(not in sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}.

 Update the distance values of adjacent vertices of 7. The distance value of vertex 6

and 8 becomes finite (15 and 9 respectively).

 10

 Step 4:

 Pick the vertex with minimum distance value and not already included in SPT

(not in sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}.

 Update the distance values of adjacent vertices of 6. The distance value of vertex 5

and 8 are updated.

We repeat the above steps until sptSet includes all vertices of the given graph. Finally, we get

the following Shortest Path Tree (SPT).

 11

#include <iostream>

usingnamespacestd;

#include <limits.h>

#define V 9

int minDistance(int dist[], bool sptSet[])

{

int min = INT_MAX, min_index;

for(intv = 0; v < V; v++)

if(sptSet[v] == false&&dist[v] <= min)

min = dist[v], min_index = v;

return min_index;

}

void printSolution(intdist[])

cout<<"Vertex \t Distance from Source"<<endl;

for(inti = 0; i< V; i++)

cout<<i<<" \t\t\t\t"<<dist[i] <<endl;

}

void dijkstra(int graph[V][V], int src)

{

int dist[V];

i

bool sptSet[V];

Below is the implementation of the above approach:

 12

for(int i = 0; i< V; i++)

dist[i] = INT_MAX, sptSet[i] = false;

dist[src] = 0;

for(intcount = 0; count < V - 1; count++) {

int u = minDistance(dist, sptSet);

sptSet[u] = true;

for(intv = 0; v < V; v++)

if(!sptSet[v] && graph[u][v]

&&dist[u] != INT_MAX

&&dist[u] + graph[u][v] <dist[v]) dist[v] =

dist[u] + graph[u][v];

}

printSolution(dist);

}

int main()

{

int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },

{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },

{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },

{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },

{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },

{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },

{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },

{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },

{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } };

 dijkstra(graph, 0);

cout<< “Satya Singh Chandel Enrollment – 0901CA211055”;

return 0;

}

 13

Output:

Vertex

Distance from Source

0 0

1 4

2 12

3 19

4 21

5 11

6 9

7 8

8 14

Satya Singh Chandel Enrollment – 0901CA211055

Time Complexity: O(V2)

Auxiliary Space: O(V)

14

