MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV,
Bhopal)

Skill Based Project report

on

Minimum Cost Graph & Single Shortest
Path

Submitted By:
Satya Singh Chandel
0901CA211055

Mentor:
Dr. Anshu Chaturvedi

(Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR - 474005 (MP) est. 1957

July-December 2021

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that Satya Singh Chandel (0901CA211055) has submitted the project report
titled Minimum Cost Graph & Single Shortest Path on problem of Data Structure &
Algorithms under the mentorship of Dr. Anshu Chaturvedi as the requirement of skill based

mini project.

1
(4
--}-

Dr. Anshu Chaturvedi

Computer Science and
Engineering

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV ,Bhopal)

DECLARATION

| hereby declare that the work being presented in this project report, for the fulfilment of partial
requirement of the skills based mini project in 2nd year of Master of Computer Application in
Computer Science and Engineering at Madhav Institute of Technology & Science, Gwalior is
an authenticated and original record of my work under the mentorship of Dr. Anshu
Chaturvedi, (Professor), MITS Gwalior.

| declare that | have not submitted the matter embodied in this report anywhere else.

Satya Singh Chandel

0901CA211055
2021-2023 Year,
Master of Computer Application,
Computer Science and Engineering

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT
The full semester project has proved to be pivotal to my career. | am thankful to my institute

,Madhav Institute of Technology and Science to allow me to continue my disciplinary
project. | extend my gratitude to the Director of the institute ,Dr. R. K. Pandit and Dean
Academics ,Dr. Manjaree Pandit for this.

I would sincerely like to thank my department, Department of Computer Science and
Engineering, for allowing me to explore this project. | humbly thank Dr. Manish Dixit,
Professor and Head, Department of Computer Science and Engineering, for his continued

support during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty coordinator. I am grateful to the guidance of Dr. Anshu
Chaturvedi, (Professor), Computer Science and Engineering, for her continued support and
guidance throughout the project. 1 am also very thankful to the faculty and staff of the

department.

=

SATYA SINGH CHANDEL
0901CA211055
1st Year,
Master of Computer Application,
Computer Science and Engineering

Abstract

Minimum Cost Graph is a approach to connect each node with every other node and similarly
for the other N nodes but in the worst case the time complexity will be NN.

The other way is to find the cost of every pair of vertices with the Euclidean distance

The task is to connect the graph such that every node has a path from any node with minimum
cost.

A directed graph, which may contain cycles, where every edge has weight, the task is to find
the minimum cost of any simple path from a given source vertex ‘s’ to a given destination
vertex ‘t’. Simple Path is the path from one vertex to another such that no vertex is visited
more than once. If there is no simple path possible then return INF(infinite).

CONTENTS

COVER PAGE ...ttt st s s s 18 5888 85000 I
CERTIFICATEttt ettt s et s st e st ees s b et b st ettt ss st s esnsensansnans I
DECLARATION. ...ttt ettt sttt s e e sss st ss s e s s s st snssss e s et ensanssassse s et ensansnens (1]
ACKNOWLEDGEMENTcisiiieris st ssesssssss s sss s st s sss s sssessssssssssssssssssssssssssssssssnsss v
ABSTRACT ..ottt et sttt st 8881581 88 R8s s e \%
CONTENTS .ttt ettt s b a s e et et es b e e et e st e st et e bs b e e st snsannnees VI
TITLE PAGE NO.

12 INTEFOAUCTION ...ttt sttt st st bt st 1

2 2 AAPPFOACK ...ttt bbb e e sttt e 2-5

32 Single Source SNOrteSt Path.............ccovevieiee ettt e 6-11

4 :Code SCreenShotS & OQULPULS........c.vuivereecetereeeee ettt sttt s e 12-14

VI

Minimum Cost Graph

Input: N =3, edges [] [] = {{1, 1}, {1, 1}, {2, 2}, {3, 2}}
Output: 1.41421

Since (2, 2) and (2, 3) are already connected.
So we try to connect either (1, 1) with (2, 2)
or (1, 1) with (2, 3) but (1, 1) with (2, 2)yields the minimum cost.

Input: N =3, edge [][]1 = {{1, 1}, {2, 2}, {3, 3}}
Output: 2.82843

Approach

The brute force approach is to connect each node with everyother node and similarly for the
other N nodes but in the worst case the time complexity will be NN.

The other way is to find the cost of every pair of vertices withthe Euclidean distance and
those pairs which are connected will have the cost as 0.

After knowing the cost of each pair we will apply the Kruskal Algorithm for the minimum
spanning tree and it will yield the minimum cost for connecting the graph. Note that for
Kruskal Algorithm, you have to have the knowledge of Disjoint

Set Union (DSU).

Below is the implementation of the above approach:
#include <bits/stdc++.h>
std;
int N = 500 + 10;
int arr[N], sz[N];

initialize()

(int i = 1; i< N; ++i) {
arr[i] = i;
sz[i] = 1;

int root(int i)
{
(arr[i] '=10)i =
arrl[i];
i

Union(int a, int b)

a =root(a);b =
root(b);

(@'=h){
(sz[a] <sz[b])swap(a,
b);

sz[a] += sz[b];arr[b] = a;

¥
¥

double minCost(vector<pair<int, int>>& p)

{

int n = (int)p.size();

vector<pair<double, pair<int, int>>> cost;

(inti=0;i<n; ++i) {
(intj=0;)<n; ++){
(i'=){

int x = abs(p[i].first - p[j].first)
+ abs(p[i].second - p[j].second);

(x==1){
cost.push_back({ 0, {i+1,j+1}});
cost.push_back({ 0, {j+1,i+1}});

}

{
int a = p[i].first - p[j].first;

int b = p[i].second - p[j].second;a *= a;
b *=b;

double d = sqgrt(a + b);
cost.push_back({d,{i+1,j+1}});
cost.push_back({d,{j+1,i+1}});

sort(cost.begin(), cost.end());

initialize();

double ans = 0.00;
(I :cost) {
double ¢ = i.first;
int a = i.second.first;
int b = i.second.second;

(root(a) !'= root(b)) {Union(a, b);
ans += c;

vector<pair<int, int>> points = {

{1 1}

{2 2}
{2 3}

cout<<minCost(points)<<endl;
cout<< “Satya Singh Chandel — 0901CA211055”;

0;

]
Output:

141421
Satya Singh Chandel Enrollment — 0901CA211055

Time Complexity: O(N*N)
Auxiliary Space: O(N*N)

SINGLE SOURCE SHORTEST PATH

Given a graph and a source vertex in the graph, find theshortest paths from the source to all
vertices in the given graph.

Examples:
Input: src = 0, the graph is shown below.
Source to all vertices in the given graph.

8

Output: 041219211198 14

Explanation: The distance from O to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Dijkstra shortest path algorithm using Prim’sAlgorithm in O(V2):

Dijkstra’s algorithm is very similar to Prim’s algorithm forminimum spanning tree.

Like Prim’s MST, generate a SPT (shortest path tree) with a given source as a root. Maintain
two sets, one set contains vertices included in the shortest-path tree, other set includes
vertices not yet included in the shortest-path tree. At every step of the algorithm, find a
vertex that is in the other set (set not yet included) and has a minimum distance from the
source.

Follow the steps below to solve the problem:

[1 Create a set sptSet (shortest path tree set) that keeps track of vertices included in
the shortest-path tree, i.e.,whose minimum distance from the source is calculated
and finalized. Initially, this set is empty.

(1 Assign a distance value to all vertices in the input graph.Initialize all distance values
as INFINITE. Assign the distance value as O for the source vertex so that it is
picked first.

(1 While sptSet doesn’t include all vertices

e Pick a vertex u which is not there in sptSet and hasa minimum distance
value.

e Include u to sptSet.
o Then update distance value of all adjacent verticesof u.
« To update the distance values, iterate throughall adjacent vertices.

o For every adjacent vertex v, if the sum of thedistance value of u
(from source) and weightof edge u-v, is less than the distance value
ofv, then update the distance value of v.

Below is the illustration of the above approach:

To understand the Dijkstra’s Algorithm lets take a graph and find the shortest path from
source to all nodes.

Consider below graph and src =0
Step 1:

(1 Now pick the vertex with a minimum distance value. Thevertex 0 is picked, include it
in sptSet. So sptSet becomes {0}. After including O to sptSet, update distancevalues
of its adjacent vertices.

1 Now pick the vertex with a minimum distance value. Thevertex 0 is picked, include it
in sptSet. So sptSet becomes {0}. After including O to sptSet, update distancevalues
of its adjacent vertices.

1 Adjacent vertices of 0 are 1 and 7. The distance values of1 and 7 are updated as 4 and
8.

(1 The following subgraph shows vertices and their distance values, only the
vertices with finite distance values are shown. The vertices included in SPT are
shown in green Color.

Step 2:

(1 Pick the vertex with minimum distance value and not already included in SPT
(not in sptSET). The vertex 1 ispicked and added to sptSet.

[1 So sptSet now becomes {0, 1}. Update the distance values of adjacent
vertices of 1.

[1 The distance value of vertex 2 becomes 12.

o

N

[1 Pick the vertex with minimum distance value and notalready included in SPT
(not in sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}.

Step 3:

[1 Update the distance values of adjacent vertices of 7. Thedistance value of vertex 6
and 8 becomes finite (15 and 9 respectively).

10

Step 4:

[1 Pick the vertex with minimum distance value and notalready included in SPT
(not in sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}.

(1 Update the distance values of adjacent vertices of 6. Thedistance value of vertex 5
and 8 are updated.

We repeat the above steps until sptSet includes all vertices of the given graph. Finally, we get
the following Shortest Path Tree (SPT).

19

0/ 21
11

12
14
9

e

11

Below is the implementation of the above approach:

#tinclude <iostream>
std;
#include <limits.h>

#tdefine V 9

int minDistance(int dist[], bool sptSet[])
{

int min = INT _MAX, min_index;
(intv = @; v < V; v++)
(sptSet[v] == &&dist[v] <= min)

min = dist[v], min_index = v;

min_index;

printSolution(intdist[])

cout<<"Vertex \t Distance from Source"<<endl;
(inti = @; i< V; i++)
cout<<ic<" \t\t\t\t"<<dist[i] <<endl;

dijkstra(int graph[V][V], int src)

int dist[V];

bool sptSet[V];

12

(inti=0;i<V;i++)
dist[i] = INT_MAX, sptSet[i] =

dist[src] = 0;

(intcount = 0; count < V - 1; count++) {

int u = minDistance(dist, sptSet);

sptSet[u] =

(intv =0; v <V, vt+)

(IsptSet[v] && graph[u][v]
&&dist[u] '= INT_MAX
&&dist[u] + graph[u][v] <dist[v])dist[v] =
dist[u] + graph[u][Vv];
}

printSolution(dist);
¥

int main()

{

int graph[V][V] = { {0,

dijkstra(graph, 0);
cout<< “Satya Singh Chandel Enrollment — 0901CA211055”;
0;

Output:

Vertex .
Distance from Source

12
19
21
11

Lo N o o A W N, O

14

Satya Singh Chandel Enrollment — 0901CA211055

Time Complexity: O(V2)
Auxiliary Space: O(V)

14

