

353,30€

Lisää ostoskoriin

E-kirja, PDF, Adobe DRM-suojattu

ISBN: 9789811037733

[DRM-rajoitukset](#)

Bhatia, Sanjiv K.

Advances in Computer and Computational Sciences

Table of contents

Part I. Advanced Software Engineering

1. Approach for an Opinion Wrapping System–Using Focused Web Crawler
Gaurav Vats, Vishal Bhatnagar, Rajat Sharma, Ishan Setiya, Arushi Jain
2. Improved Environmental Adaption Method with Real Parameter Encoding for Solving Optimization Problems
Tribhuvan Singh, Ankita Shukla, K. K. Mishra
3. Grouping-Aware Data Placement in HDFS for Data-Intensive Applications Based on Graph Clustering
S. Vengadeswaran, S. R. Balasundaram
4. Parameter Estimation for PID Controller Using Modified Gravitational Search Algorithm
Ankush Rathore, Manisha Bhandari
5. Auto Improved-PSO with Better Convergence and Diversity
Ashok Kumar, Brajesh Kumar Singh, B. D. K. Patro
6. A Novel Hybrid PSO–WOA Algorithm for Global Numerical Functions Optimization
Indrajit N. Trivedi, Pradeep Jangir, Arvind Kumar, Narottam Jangir, Rahul Totlani
7. Moth-Flame Optimizer Method for Solving Constrained Engineering Optimization Problems
R. H. Bhesdadiya, Indrajit N. Trivedi, Pradeep Jangir, Narottam Jangir
8. Training Multilayer Perceptrons in Neural Network Using Interior Search Algorithm
R. H. Bhesdadiya, Indrajit N. Trivedi, Pradeep Jangir, Arvind Kumar, Narottam Jangir, Rahul Totlani
9. Sequence Generation of Test Case Using Pairwise Approach Methodology
Deepa Gupta, Ajay Rana, Sanjay Tyagi
10. A Rule Extraction for Outsourced Software Project Risk Classification
Zhen-hua Zhang, Yong Hu, Kuixi Xiao, Shenguo Yuan, Zhao Chen

11. Prediction of Market Movement of Gold, Silver and Crude Oil Using Sentiment Analysis

Kunal Keshwani, Piyush Agarwal, Divya Kumar, Ranvijay

12. Social Influence and Learning Pattern Analysis: Case Studies in Stackoverflow

Sankha Subhra Paul, Ashish Tripathi, R. R. Tewari

13. Classification Approach to Extract Strongly Liked and Disliked Features Through Online User Opinions

Juveria Fatima, Deepak Arora

Part II. Internet of Things

14. A Multicriteria Decision-Making Method for Cloud Service Selection and Ranking

Rakesh Ranjan Kumar, Chiranjeev Kumar

15. Development and Analysis of IoT Framework for Healthcare Application

Anil Yadav, Nitin Rakesh, Sujata Pandey, Rajat K. Singh

16. An Effective and Empirical Review on Internet of Things and Real-Time Applications

Surbhi Gill, Paras Chawla, Pooja Sahni, Sukhdeep Kaur

17. Operations on Cloud Data (Classification and Data Redundancy)

Sandeep Khanna, Nitin Rakesh, Kamal Nayan Chaturvedi

18. Load Balancing Tools and Techniques in Cloud Computing: A Systematic Review

Mohammad Oqail Ahmad, Rafiqul Zaman Khan

19. A Hybrid Optimization Approach for Load Balancing in Cloud Computing

Apoorva Tripathi, Saurabh Shukla, Deepak Arora

20. A Comparative Analysis of Cloud Forensic Techniques in IaaS

Palash Santra, Asmita Roy, Koushik Majumder

21. Cloud Detection: A Systematic Review and Evaluation

Harinder Kaur, Neelofar Sohi

22. Sentiment Classification for Chinese Micro-blog Based on the Extension of Network Terms Feature

Fei Ye

23. Implementation of Stress Measurement System Based on Technology of Internet of Things

Qingshuai Wang, Hui Cao, Ailin Li, Tao Xu

24. Social Media Big Data Analysis for Global Sourcing Realization

Shi-Feng Huang, Chuan-Jun Su, Maria Belen Vargas Saballos

25. Based on Hidden Markov Model to Identify the Driver Lane-Changing Behavior of Automobile OBD Internet of Vehicles Research and Design

Yu Tu, Fengdeng Zhang, Zhijian Wang

26. The Research on Key Technique of Raw Coal Management Information System

Xiaoyan Zhang, Lei Zhang

27. Structural Modeling of Implementation Enablers of Cloud Computing

Nitin Chawla, Deepak Kumar

28. Labelling and Encoding Hierarchical Addressing for Scalable Internet Routing

Feng Wang, Xiaozhe Shao, Lixin Gao, Hiroaki Harai, Kenji Fujikawa

29. A Cuckoo Search Algorithm-Based Task Scheduling in Cloud Computing

Mohit Agarwal, Gur Mauj Saran Srivastava

30. Performance Optimization in Cloud Computing Through Cloud Partitioning-Based Load Balancing

Sonam Srivastava, Sarvpal Singh

Part III. Intelligent Image Processing

31. An Optimistic Approach of Locking Strategy in Progress Fourth Generation

Language

Neha Prabhakar, Abhishek Singh

32. Combating Clickjacking Using Content Security Policy and Aspect Oriented Programming

Rakhi Sinha, Dolly Uppal, Rakesh Rathi, Kushal Kanwar

33. A Conceptual Framework for Analysing the Source Code Dependencies

Nisha Ratti, Parminder Kaur

34. DWT-SVD-Based Color Image Watermarking Using Dynamic-PSO

Nitin Saxena, K. K. Mishra, Ashish Tripathi

35. Semi-supervised Spatiotemporal Classification and Trend Analysis of Satellite Images

Avinash Chandra Pandey, Ankur Kulhari

36. Improved Content-Based Image Classification Using a Random Forest Classifier

Vibhav Prakash Singh, Rajeev Srivastava

37. An Advanced Approach of Face Recognition Using HSV and Eigen Vector

Santosh Kumar, Atul Chaudhary, Ravindra Singh, Manish Sharma, Anil Dubey

38. RMI Approach to Cluster Based Image Decomposition for Filtering Techniques

Sachin Bagga, Akshay Girdhar, Munesh Chandra Trivedi, Yinan Bao, Jingwen Du

39. Segregation of Composite Document Images into Textual and Non-Textual Content

Munesh Chandra Trivedi, Shivani Saluja, Tarun Shrimali, Shivani Shrimali

40. Optimization of Automatic Test Case Generation with Cuckoo Search and Genetic Algorithm Approaches

Rijwan Khan, Mohd Amjad, Akhlesh Kumar Srivastava

41. Impact Analysis of Contributing Parameters in Audio Watermarking Using DWT and SVD

42. Digital Audio Watermarking: A Survey
Ritu Jain, Munesh Chandra Trivedi, Shailesh Tiwari

43. Brain CT and MR Image Fusion Framework Based on Stationary Wavelet Transform
Sharma Dileep Kumar Ramal, Jainy Sachdeva, Chirag Kamal Ahuja, Niranjan Khandelwal

44. A Feature-Based Semi-fragile Watermarking Algorithm for Digital Color Image Authentication Using Hybrid Transform
Hiral A. Patel, Nidhi H. Divecha

45. Inventory Control Using Fuzzy-Aided Decision Support System
Mahuya Deb, Prabjot Kaur, Kandarpa Kumar Sarma

46. Assessment of Examination Paper Quality Using Soft Computing Technique
Shruti Mangla, Abhishek Singh

47. Moving Shadow Detection Using Fusion of Multiple Features
Yajing Lin, Bingshu Wang, Yong Zhao

48. Caption Text Extraction from Color Image Based on Differential Operation and Morphological Processing
Li-qin Ji

49. Reversible Data Hiding Based on Dynamic Image Partition and Multilevel Histogram Modification
Wenguang He, Gangqiang Xiong, Yaomin Wang

Part IV. ADBMS and Security

50. Threshold-Based Hierarchical Visual Cryptography Using Minimum Distance Association
Pallavi Vijay Chavan, Mohammad Atique

51. Security in IoT-Based Smart Grid Through Quantum Key Distribution
Maninder Kaur, Sheetal Kalra

52. A Comparative Study on Face Detection Techniques for Security Surveillance
Dimple Chawla, Munesh Chandra Trivedi

53. Proposed Approach for Book Recommendation Based on User k-NN
Rohit, Sai Sabitha, Tanupriya Chaudhury

54. Improved FP-Linked List Algorithm for Association Rule Mining
Aditya Gupta, Kunal Gusain, Lalit Mohan Goyal

55. On Hierarchical Visualization of Event Detection in Twitter
Nadeem Akhtar, Bushra Siddique

56. Audio Steganography Techniques: A Survey
Shilpi Mishra, Virendra Kumar Yadav, Munesh Chandra Trivedi, Tarun Shrimali

57. Role of Clustering in Crime Detection: Application of Fuzzy K-means
Nidhi Tomar, Amit Kumar Manjhvar

58. Implementation of Modified K-means Approach for Privacy Preserving in Data Mining
Shifa Khan, Deepak Dembla

59. Cross-Lingual Information Retrieval: A Dictionary-Based Query Translation Approach
Vijay Kumar Sharma, Namita Mittal

60. Predictive Classification of ECG Parameters Using Association Rule Mining
Kratika Tyagi, Sanjeev Thakur

61. Two-Level Diversified Classifier Ensemble for Classification of Credit Entries
Pramod Patil, J. V. Aghav, Vikram Sareen

62. P-RED: Probability Based Random Early Detection Algorithm for Queue Management in MANET
Neelam Sharma, Shyam Singh Rajput, Amit Kumar Dwivedi, Manish Shrimali

63. Analyzing Game Stickiness Using Clustering Techniques
Hycinta Andrat, Nazneen Ansari

64. Automated Detection of Acute Leukemia Using K-mean Clustering Algorithm
Sachin Kumar, Sumita Mishra, Pallavi Asthana, Pragya

64. Automated Detection of Acute Leukemia Using K-mean Clustering Algorithm

Sachin Kumar, Sumita Mishra, Pallavi Asthana, Pragya

65. Energy Data Analysis of Green Office Building

Weiyan Li, Minnan Piao, Batao Huang, Chenfei Qu

66. Location Prediction Model Based on K-means Algorithm

Yan Hu, Xiaoying Zhu, Gang Ma

67. Visual Tracking via Clustering-Based Patch Weighing and Masking

He Yuan, Hefeng Wu, Dapeng Feng, Yongyi Gong

68. A Presenter Discovery Method Based on Analysis of Reputation Record

Jin-dong Wang, Zhi-yong Yu, Xiang Liu, Miao Sun

Role of Clustering in Crime Detection: Application of Fuzzy K-means

Nidhi Tomar and Amit Kumar Manjhvar

Abstract The rising rate of crime has devastated everything seriously. The reason of working on crime dataset is to make a better system, which can make people more aware about the increasing type of crime and crime rate in various fields. The proposed paper works on the detection of crime count and the factors that decide the increasing nature of crime in a better way. Utilization of fuzzy k-means has lead to a better technology that detects the crime rate in a better and effective way. The termination measure is an important factor to define the clusters that are formed over the years. They help in easy detection whether the crime is increasing over the years or not. The dataset from the Indian government's website is taken and been processed so that the results that are calculated can be as correct and near to reality as possible.

Keywords Data mining • Crime detection • Fuzzy • K-means • Clustering • Termination measure

1 Introduction

Crime is a very serious problem in the world. Malefaction is a crime against the society that is often prosecuted and realizable by the law [1]. Criminals commit crime at the place anywhere in type. Traditionally solving crime has been the privilege of the crime equity and law enforcement specialists. With the incrementing utilization of the computerized system to track crime, computer data analysis has commented availing the law enforcement [2]. Many challenges are increasing encountered by decision-makers in the law enforcement department in detecting, identifying the public crime or and tracing or tracking the social crime or

N. Tomar (✉) · A.K. Manjhvar

Department of Computer Science and Engineering, MITS College, Gwalior, India
e-mail: tomarnidhi4@gmail.com

A.K. Manjhvar
e-mail: mitkumar@mitsgwalior.in

actions according to their timeline is becoming a tedious task [3]. The Process of information divided into similar object groups known as clusters. Object consist that are similar to one another and exceptional to objects of other collection is called clustering in this implementing work we differentiate a cluster through a c-means clustering methods using the concept of fuzzy [4].

1.1 Fuzzy K-means Approach

It is the type of clustering algorithms, it is the procedure of partitioning the points of data into the clusters like k and S_l ($l = 1, 2, \dots, k$) and clusters S_l are related to representatives (cluster center) C_l . The relationship between a cluster and data points belong to a fuzzy [5]. That is, a membership is $u_{i,j} \in [0, 1]$ is used to show the degree is belong to data point X_i and cluster center C_j . Denote data points set as $S = \{X_i\}$. Fuzzy K-means method is based on minimizing following distortion:

Clustering methods Fuzzy k-means is used for division of points of records into the k clusters S_l ($l = 1, 2, \dots, k$) and clusters S_l are related with a representative (cluster center) C_l . The correlation between a data point and cluster representative is fuzzy [6]. That is a membership $u_{i,j} \in [0, 1]$ is used to show the degree which is belongings of data point X_i and cluster center C_j —Denote the set of data points as $S = \{X_i\}$. This algorithm of Fuzzy k-means is based on the minimizing the following distortion:

$$J = \sum_{j=1}^k \sum_{i=1}^N u_{i,j}^m d_{ij} \quad (1)$$

With respect to the memberships $u_{i,j}$ and cluster representatives C_j , where N is various data points; m is the fuzzifier parameter; k is numerous clusters; and d_{ij} is squared Euclidean distance between data points X_i and also representative of cluster C_j . It is noted that $u_{i,j}$ should satisfy the following constraint:

$$\sum_{j=1}^k u_{i,j} = 1, \text{ for } i = 1 \text{ to } N. \quad (2)$$

1.2 Working Steps of Fuzzy K-Means

- (1) Input is a set of initial cluster centers $SC_0 = \{C_j(0)\}$ and the value of is set $P = 1$.
- (2) Set of cluster centers SC_p , are given compute d_{ij} for $i = 1$ to N and $j = 1$ to K .
Update memberships value $u_{i,j}$ by the following equation:

$$u_{i,j} = \left((d_{ij})^{\frac{1}{m}-1} \sum_{l=1}^k \left(\frac{1}{d_{il}} \right)^{\frac{1}{m}-1} \right)^{-1} \quad (3)$$

If $d_{ij} > \eta$, set $u_{ij} = 1$, where η is a small positive number.

(3) Calculate center of all clusters applying Eq. (4). To find a new cluster set representatives SC_{p+1} .

$$C_j(P) = \frac{\sum_{i=1}^N u_{ij}^m X_i}{\sum_{i=1}^N u_{ij}^m} \quad (4)$$

(4) If $\| C_j(p) - C_j(p-1) \| > \epsilon$ and for $j = 1$ to K , stop, where $\epsilon > 0$ is a very small positive number. Otherwise, set $P + 1 \rightarrow P$ and go to step 2.

The computational complexity of FKM in the form of phase 2 and 3. Though, the computational complexity of phase 3 is much less than that of phase 2. For that cause, this complexity, in various distance calculations terms, of FKM is $O(Nkt)$, where t is the amount of iterations [7].

2 Literature Survey

Wang Shunye et al. [8] Stimulated with the random determination problem of initial centroid and similarity measures, the researcher presented a make novel k-means methods of clustering dissimilarity based. The algorithm which proposed gives enhanced accuracy rates and results. Pallavi Purohit and Ritesh Joshi et al. [9] proposed an enhanced approach designed for original K-means algorithm due to its certain limitations. The main reason of this method is poor performance in the initial centroid random selection. The proposed algorithm deals with this problem and improves the performance and cluster quality of original k-means methods. It first finds out the closest data point by calculating Euclidian distance between each data point and then these points are deleted from population. Juntao Wang and Xiao log [10] discussed about an improved version of k-means clustering algorithm to deal with the problem of outlier detection of existing k-means algorithm. The proposed algorithm usages noise information filter to the deal with this issue [11]. Density based outlier detection method is applied to the data to be clustered so as to remove the outliers [12]. The motive of this method is that the outliers may not be engaged in computation of initial cluster centers.

3 Proposed Work

The proposed work show that the number of clusters formed in the graph displays the crime count yearwise in all the cities. The proposed algorithm is applied fuzzy k-means of the crime data which leads to cluster formation in a better way. The crime detection being an important aspect needs to be taken seriously. The main motive of providing this proposed is to highlight the use of clustering technique on real-world based dataset which is based on crime. The database contains crime type, location, city, crime id and few more columns. The database seems like this: (Fig. 1).

A flowchart representation has been shown below here for the proposed work (Fig. 2).

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
2	8023285	HIN7449	02-25-2008 11:00:00 PM	JAPAN	414	BATTERY	DOMESTIC BATTERY SIMPLE GAS STATION	False	True	7528	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
3	8023247	HIN7450	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE STREET	False	True	7529	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
4	8023248	HIN7451	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE STREET	False	True	7530	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
5	8023278	HIN7454	02-25-2008 11:00:00 PM	JAPAN	7433	BURGLARY	DOMESTIC BATTERY SIMPLE RESIDENCE-GANG VALUE	False	True	7531	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
6	8023238	HIN7455	02-25-2008 11:00:00 PM	JAPAN	5663	ASSAULT	DOMESTIC BATTERY SIMPLE RESIDENCE	False	True	7532	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
7	8023239	HIN7456	02-25-2008 11:00:00 PM	JAPAN	5663	ASSAULT	DOMESTIC BATTERY SIMPLE RESIDENCE	False	True	7533	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
8	8023430	HIN7458	02-25-2008 11:00:00 PM	JAPAN	5663	BATTERY	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7534	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
9	8023445	HIN7459	02-25-2008 11:00:00 PM	JAPAN	5663	BATTERY	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7535	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
10	8023446	HIN7460	02-25-2008 11:00:00 PM	JAPAN	120	CRIMINAL DAMAGE	DOMESTIC BATTERY SIMPLE APARTMENT	False	True	7536	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
11	8023238	HIN7461	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE STREET	False	True	7537	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
12	8023239	HIN7462	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE STREET	False	True	7538	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
13	8023239	HIN7463	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE STREET	False	True	7539	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
14	8023239	HIN7464	02-25-2008 11:00:00 PM	JAPAN	120	CRIMINAL DAMAGE	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7540	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
15	8023239	HIN7465	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7541	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
16	8023280	HIN7466	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7542	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
17	8023414	HIN7467	02-25-2008 11:00:00 PM	JAPAN	2094	ROBBERY	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7543	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
18	8023239	HIN7468	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7544	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
19	8023239	HIN7469	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7545	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
20	8023272	HIN7470	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7546	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
21	8023239	HIN7471	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7547	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
22	8023239	HIN7473	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7548	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
23	8023239	HIN7474	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7549	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
24	8023239	HIN7475	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7550	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
25	8023239	HIN7476	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7551	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
26	8023239	HIN7477	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7552	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
27	8023491	HIN7478	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7553	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
28	8023295	HIN7479	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7554	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
29	8023239	HIN7480	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7555	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
30	8023492	HIN7481	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7556	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
31	8023239	HIN7482	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7557	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
32	8023239	HIN7483	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7558	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
33	8023239	HIN7484	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7559	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
34	8023239	HIN7485	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7560	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
35	8023224	HIN7486	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7561	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
36	8023239	HIN7487	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7562	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
37	8023239	HIN7488	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7563	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
38	8023239	HIN7489	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7564	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
39	8023239	HIN7490	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7565	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
40	8023239	HIN7491	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7566	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
41	8023239	HIN7492	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7567	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
42	8023239	HIN7493	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7568	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
43	8023239	HIN7494	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7569	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
44	8023239	HIN7495	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7570	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
45	8023239	HIN7496	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7571	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
46	8023239	HIN7497	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7572	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
47	8023239	HIN7498	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7573	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
48	8023239	HIN7499	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7574	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
49	8023239	HIN7500	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7575	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
50	8023239	HIN7501	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7576	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
51	8023239	HIN7502	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7577	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
52	8023239	HIN7503	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7578	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
53	8023239	HIN7504	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7579	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00	02:00:00
54	8023239	HIN7505	02-25-2008 11:00:00 PM	JAPAN	414	WEAPONS VIOLATION	DOMESTIC BATTERY SIMPLE SIDEWALK	False	True	7580	2008	02-25-2008	02:00:00	02:00:00	02:00:00	02:00:00		

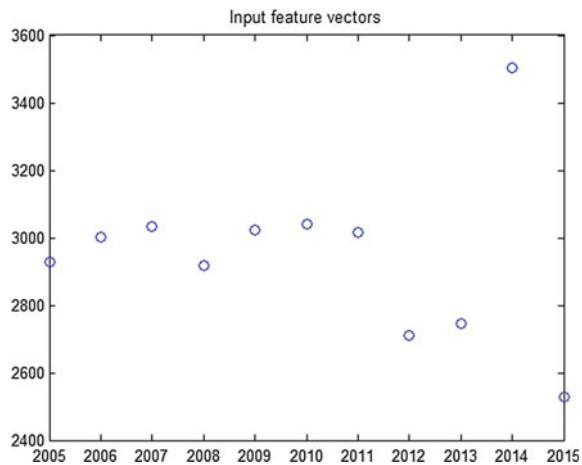
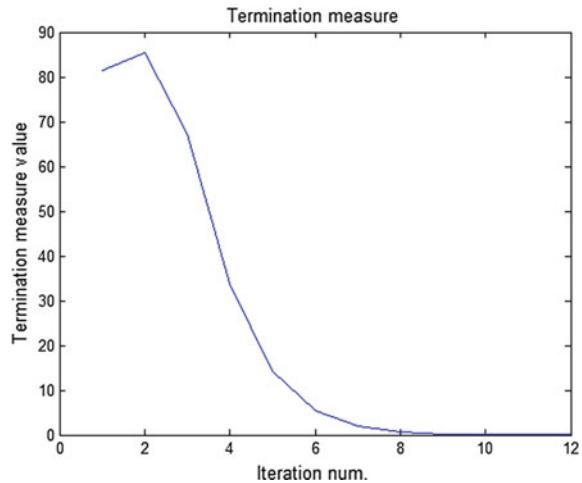
Proposed Algorithm Pseudocode:**Pseudo_Yf_FKMC1 (X, c, options, init_V)**

1. Define maximum iterations $max_it = 100$;
termination threshold = $1.0e+03^*$;
 $initial_velocity = 0$.
2. Define n : Number of feature vectors
 p : Length of each feature vector
3. if use_init_V,
 $V = init_V$;
else
 $V = Yf_FKMC1_InitV (c, p);$ % Initial cluster centers
end
4. for $i = 1:max_iter$,
 $[V, U, E(i)] = Yf_FKMC1_Step (X, V, c, m);$
Show iteration count & termination measure value. End.

Pseudo_Yf_FKMC1_InitV(c, p)

Generate initial cluster centers for FKM clustering using formula:

$V = rand(c, p)$



Pseudo_Yf_FKMC1_Step(X, V, c, m)

1. Initialize $n = size (X, 1)$
 $p = size (X, 2)$, where, X is the input data of the crime
2. Distance calculation using Euclidean distance formula
 $dist = Yf_EuDistArrayOfVectors1 (V, X)$
3. Now calculating the new membership degrees using a variable temp.
 $tmp = dist.^{(-2/(m-1))}$
 $U = tmp ./ (ones(c, 1) * sum(tmp))$
4. Check constraint by checking
 $tmp = ((sum (U) - ones (1, n)) > 0.0001)$
5. Update V , mf , and E
 $mf = U.^m$ % MF matrix after exponential modification
 $V = mf * X ./ ((ones(p, 1) * sum(mf'))')$ % new center
 $E = norm (V - V_old, 1)$
6. End.

4 Result Analysis

The results show various factors and results:

1. Cluster formation in the base: these are the crime counts on an overall basis. The x-axis shows the year and y-axis shows the total number of crimes (Fig. 3).
2. Termination measure: this can be defined as the value of the termination measure that goes along with the number of iterations. The value denotes the

Fig. 3 Crime count yearwise**Fig. 4** Termination measure

termination of the proposed algorithm. The termination value is set initially and the algorithm is terminated when its value reaches a very less point. The termination value taken in proposed algorithm is $1.0e + 03^*$ (Figs. 3 and 4).

3. Membership function: membership function is used in fuzzy as the degree of truth and evaluation of extension of the outcomes. The figure shows the membership values for both base and proposed respectively. From the figure it can be derived as the fact that membership value for proposed is better than previous values (Fig. 5).
4. Cluster formation: Number of clusters defined = 2. The clusters formed are shown in the Fig. 6.

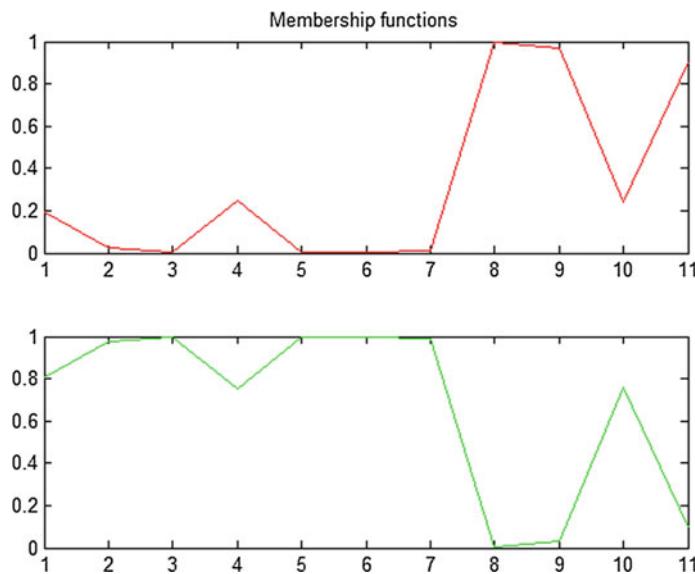


Fig. 5 Membership function

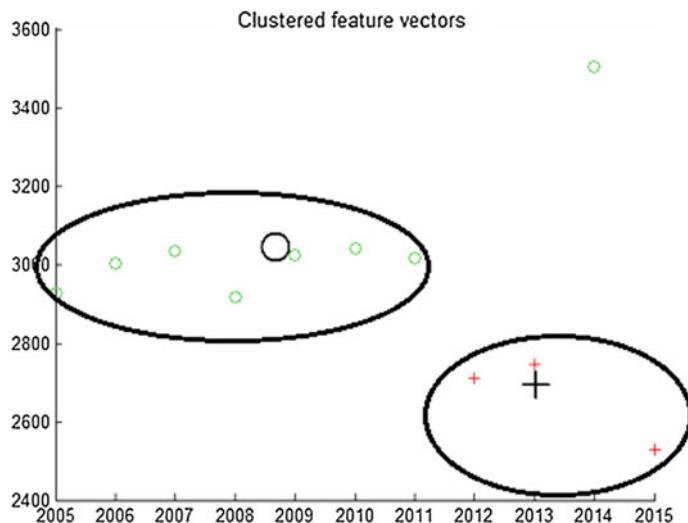
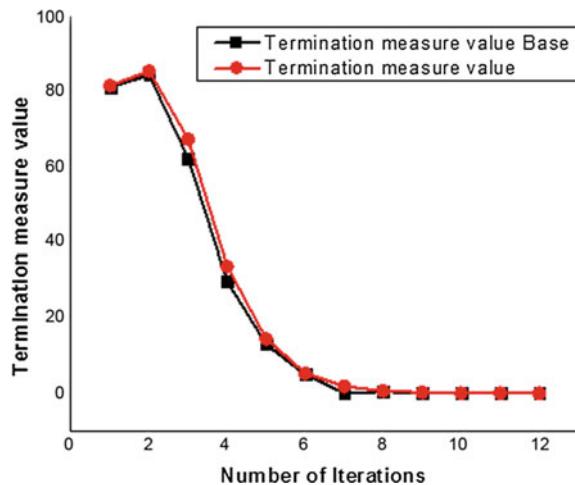


Fig. 6 Clustered feature vectors


4.1 Results of FKMC

The results are generated in iterative manner which are shown below in tabular form:

Iteration	Termination measure value
1	81.444251
2	85.274352
3	67.243550
4	33.692983
5	14.442164
6	5.292763
7	1.842184
8	0.629867

4.2 Comparison Results

Fig. 7 Termination measure value graph

5 Conclusion

Crime detection plays a vital role in our lives for the reason that of the increasing rate of the crime happening in every area of the country. The crime is also of various types which has made it complex further. The government is not able to find a proper way out towards the removal of the crime and have better control over it. The proposed works above is a step ahead in this field. A further work needs also to be done so as to detect the category of crime, crime count, citywise distribution, increasing rate, etc. The various factors which affect crime rate are discussed.

References

1. R. G. Uthra "Data Mining Techniques to Analyze Crime Data.", International Journal For Technological Research In Engineering Volume 1, Issue 9, (2014).
2. Gupta, Manish, B. Chandra, and M. P. Gupta. "Crime mining for the Indian police information system." *Proceeding of the 2008 CSI* (2008).
3. Ismail,M,A, and Selim, S.Z. Fuzzy c-means optimality of solutions and effective termination of the algorithm. *Pattern recognition*, 19(6), pp (1986). 481–485.
4. Sharma, Anshu, and Shilpa Sharma. "An Intelligent Analysis of Web Crime Using Data Mining." *International Journal of Engineering and Innovative Technology* (2012).
5. Jain, Anil K., and Richard C. Dubes "Algorithm for clustering data." Prentice-Hall, Inc., (1998).
6. Pal, Sankar K., and Dwijesh K Dutta-Manjumder" Fuzzy mathematical approach to Pattern recognition Halsted Press, (1986).
7. Hall, L.O, Bensaïd, A.M., Clarke, L.P. Velthuizen, R.P., Silbiger, M.S. and Bezdek, J.C, 1992, A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain., *IEEE Transactions on* 3(5), (1992) pp. 672–682.
8. Wang, Juntao, and Xiaolong Su. "An improved K-means clustering algorithm." In *communication software and networks (ICCSN)*, IEEE, (2011).
9. Purohit, P. And Joshi, R., A new efficient approach towards K-means clustering algorithm. *International Journal of computer applications*, 65 (11) (2013).
10. Wang, J. And Su, X., 2011, May. An improved K-Means clustering algorithm. In *Communication Software and Networks (ICCSN)*, IEEE 3rd International Conference on (pp. 44–46). IEEE. (2011).
11. Nath, Shyam Varan. "Crime pattern detection using data mining." In *Web Intelligence and Intelligent Agent Technology Workshops, 2006. WI-IAT Workshops. IEEE/WIC/ACM International Conference on*, pp. 41–44. IEEE, (2006).
12. Fahim, A. M., A. M. Salem, F. A. Torkey, and M. A. Ramadan. "An efficient enhanced k-means clustering algorithm." *Journal of Zhejiang University SCIENCE A* 7, no. 10 (2006): 1626–1633 (2006).