

2018 8th International Conference on Communication Systems and Network Technologies (CSNT 2018)

**Bhopal, India
24-26 November 2018**

IEEE Catalog Number: CFP1818P-POD
ISBN: 978-1-5386-5957-1

**Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc.
All Rights Reserved**

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

****** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.***

IEEE Catalog Number:	CFP1818P-POD
ISBN (Print-On-Demand):	978-1-5386-5957-1
ISBN (Online):	978-1-5386-5956-4
ISSN:	2329-7182

Additional Copies of This Publication Are Available From:

Curran Associates, Inc
57 Morehouse Lane
Red Hook, NY 12571 USA
Phone: (845) 758-0400
Fax: (845) 758-2633
E-mail: curran@proceedings.com
Web: www.proceedings.com

2018 8th International Conference on Communication Systems and Network Technologies

CSNT 2018 Table of Contents

Track-A: Antennas and Wave Propagation

A Wide Band, Highly-Efficient Circular Patch Antenna with Split Triangular-Shape Slit	1
<i>Rahul Kumar Garg; Smriti Dwivedi; Raghuvir Tomar</i>	
Modified Sierpinski Carpet Semi-Fractal CPW Feed antenna for wireless applications	6
<i>Shubham Chourasiya; Tanmay Bhagwat; Shubham Yadav; Gaurav Chaitanya</i>	
Study and Comparison of Planar and Cylindrical Patch Antenna.....	11
<i>Sumanta Kundu; Pramod Kumar Singh</i>	
SRR-Based Octagonal Ring Ultra Wideband Antenna	17
<i>Ritesh Kumar Saraswat, Antriksh Raizada, Himanshu Garg, Ketan Singh and Karan Chouhan</i>	
Design of Multi-Band Octagonal Shape Patch Antenna for WLAN/WiMAX Applications.....	21
<i>Kunal Jeet Singh; Ritesh Kumar Saraswat Ritesh Kumar Saraswat, Swasti Dubey, Kunal Jeet Singh, Neeraj Sharma, Vishal Kachhawa</i>	
Design Rectangular Microstrip Patch Antenna for GSM 900 and GSM 1800 Base Station.....	25
<i>Wafaa Mohammed, Adheed Hasan Sallomi</i>	

Track-B: Communication Systems and Wireless Networks

An Approach to Detection Probability of Cluster-Based CRN	29
<i>Shraddha Bansal, Abhay Kumar</i>	
Comparative Analysis on LDPC decoding by Bit flipping Algorithm using QAM and QPSK modulation techniques for DVB-S2	34
<i>Jitendra Pratap Mathur; Alpana Pandey</i>	
A Cluster Based Approach for Cognitive Radio Networks	40
<i>Ashish Bagwari, Jyotshna Kanti, GS Tomar</i>	
Integrated Turbo Decoder For Validation of Baseband Data Handling System	44
<i>Neelima V, Chayan Dutta, Sri Vidhya S, Sura P S, Valarmathi. N</i>	

Secured use of USB over the Intranet with anonymous device Identification.....	49
<i>Harita Bhargava; Sanjeev Sharma</i>	
Automation and Control of LEBT Power Supplies using LabVIEW.....	54
<i>Nidhi Patle, Ashish Kumar Bhandari, K. M. Khare, Rohit Mishra, D. V. Ghodke, V. K. Senecha</i>	
A Novel Partial Protection Architecture to Enhance Reliability in Optical Access Networks.....	58
<i>Jitendra Gupta; Aneek Adhya</i>	
Load Balancing in Cloud Computing: A Survey on comparison of two algorithms PSO and SJF-MMBF.	62
<i>Sunita Gond; Shailendra Singh</i>	
Predicting Results of Indian Premier League T-20 Matches using Machine Learning.....	67
<i>Jayash Kumar Sharma; Shilpi Agrawal; Suraj Pal Singh</i>	
An Analysis to Find The Efficient Clustering Algorithm For Identification of User Access Pattern.....	72
<i>Monika Sharma; Prerna Kumari; M Rizvi</i>	
The Effectiveness of Parameter Tuning on Ant Colony Optimization for Solving the Travelling Salesman Problem.....	78
<i>Kush Shrivastava; Shishir Kumar</i>	
Ambient Light Monitoring System for Low Power and Lossy Networks Using RPL Routing Protocol.....	84
<i>Bhuvana P.T.V.Bhuvaneswari; V. Gokilapriya; J. Mahalakshmi</i>	

Track-C: Data Mining, Cloud Computing and Web Services

Challenges of Big Data to Big Data Mining with their Processing Framework.....	89
<i>Kamlesh Kumar Pandey; Diwakar Shukla</i>	
Data Interpretation for Social Network Using R API.....	95
<i>Rajiv Pandey; Pawan Saxena; Shivanshi Tripathi</i>	
Optimized method of Resettlement of Smart Bus based on Internet of Things.....	100
<i>Halchal Sahu; Arpi Jain; Lokendra Vishwakarma</i>	
CLUE Based Load Balancing in Replicated Web Server.....	104
<i>Anup Kumar; Prachi Shukla</i>	
<i>Virtual machine selection strategy based on Grey Wolf Optimizer in Cloud Environment: A case study.....</i>	108
<i>Priyanshi Singh, Murtaza Abbas Rizvi</i>	
Towards Securing Real time data in IoMT Environment.....	113
<i>Harshita Patel; Amit H. Palve</i>	
Algorithms for Anonymity Preservation in Cloud Computing.....	120
<i>Rakesh Prasad Sarang</i>	
<i>Study of the Attributes using Four Class Labels on KDD99 and NSL-KDD Datasets with Machine Learning Techniques.....</i>	127
<i>Nilesh Kunhare; Ritu Tiwari</i>	
RTT based probabilistic hop count packet filtering at IaaS virtual cloud infrastructure against chcf and phcf techniques.....	132
<i>Ritu Maheshwari, Anil Rajput, Anil Kumar Gupta</i>	
IOT based Smart Waste Bin to Track Dustbin and Public Complaint Management System.....	137
<i>Ajmal Khan, Sandeep Kumar Agrawal</i>	

<i>Challenges and issues in Data Analytics.....</i>	144
<i>Amit Kr Gupta, Saurabh Singhal, Ruchi Rani Garg</i>	

Track-D: Bio Medical, Image Processing and Hardware Design

Evaluating the Importance of each Feature in Classification task.....	151
<i>Syed Muzamil Basha; Dharmendra Singh Rajput</i>	
E-Health Services Composition and Adaptation Design of Automated Text Messaging for Healthy and Fitness clubs.....	156
<i>Bethu Srikanth; B Sankara Babu; G Karuna; Cvns Anuradha; TV Sunitha</i>	
A New Method Of Bio-Medical Image Compression using Hybrid Techniques.....	169
<i>Nitin Ahirwar, Ritu Prasad, Praneet Saurabh, Bhupendra Verma</i>	
A Sentiment analysis approach through deep learning for a movie review.....	173
<i>Tanushree Dholpuria; Yuvraj Rana; Chetan Agrawal</i>	
Optimization of Edges of an Image using Gravitational Search Algorithm.....	182
<i>Juhi Punhani, Manish Dixit</i>	

Track E: Security and Embedded Systems

Embedded System for Automatic Transplanting of Vegetable Plug Seedling.....	187
<i>Abhijit Khadatkar; S Mathur; K Dubey</i>	
Effect of Different Nano Meter Technology Based FPGA on Energy Efficient UART Design.....	192
<i>Keshav Kumar; Bishwajeet Pandey; Suryanarayan Panda; Amanpreet Kaur</i>	
Low Power UART Design Using Different Nanometer Technology Based FPGA.....	196
<i>Keshav Kumar; Amanpreet Kaur, Bishwajeet Pandey; Surya Narayan Panda</i>	
Audio Encryption Optimization.....	199
<i>Harsh Bijlani; Dikshant Gupta; Mayank Lovanshi</i>	
Inversion of Complex Neural Network.....	204
<i>Manmohan Shukla, BK Tripathi</i>	
Sentiment Analysis of Multilingual Twitter Data using Natural Language Processing....	208
<i>Vikas Goel, Amit Kumar Gupta, Narendra Kumar</i>	
<i>Author Index</i>	213

Optimization of Edges of an Image using Gravitational Search Algorithm

Juhi Punhani, Manish Dixit

Dept. of CSE & IT

Madhav Institute of Technology and Science

Gwalior, India

punhanijuhi16@gmail.com, manishdixit@ieee.org

Abstract: In this work edges of image have been optimized using Gravitational Search Algorithm. Edge is an essential and extensive feature of an image. Edges of a picture are examined a form of imperative information that can be extricated by use of detectors with distinct techniques. Edge detection is a fundamental step as it is a process of selecting and locating continuity and acute discontinuities in a picture. Gravitational Search Algorithm is a prominent population based search method which is inspired by Newtonian gravity. In this paper, comprehensive analysis of edge detection using adaptive thresholding and gravitational search algorithm is used along with adaptive thresholding for edge detection has been performed. Experimental analysis are done on several test images by using these two methods which shows that edge detection using adaptive thresholding along with GSA optimization method has superior image quality and better Structural Similarity Index Metric (SSIM) value.

Keywords: Gravitational Search Algorithm (GSA), Adaptive Thresholding, Edge Detection, Structural Similarity Index Metric (SSIM).

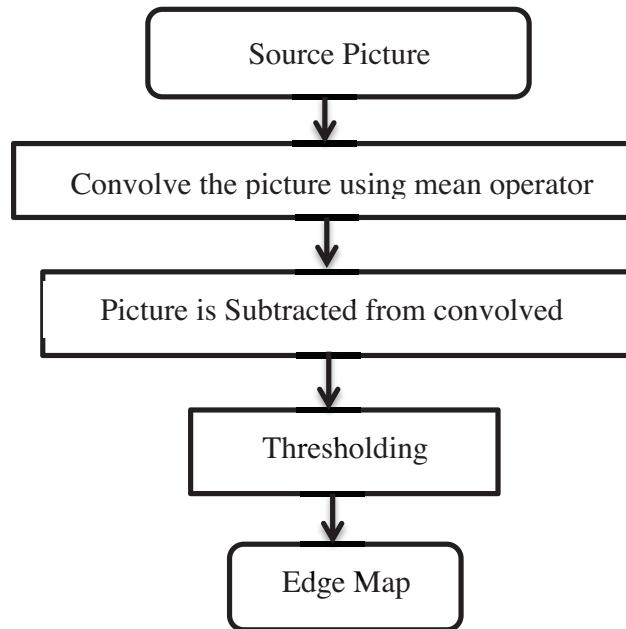
1. INTRODUCTION

Recently, with the evolution of image processing technology it is used quite a lot. Most of our essence reticulate with a technological structure is encased in an image processing device is configured on. One of the most relevant areas in the image processing is an edge detection process. Detection of edge is the vital in image analysis, image segmentation, texture feature extraction and shape feature extraction [1]. Edge detection is defined as the technique of selecting and locating acute discontinuities in an image. It is used to locate an edge of an image. Thresholding can be defined as in which a portion of image is taken and by context all pixels of intensity values higher than a threshold is set to a forepart value and for a background value all the entire remaining pixels are set. Although the ordinary threshold operator for pixels uses an overall threshold. But in adaptive thresholding different variations of threshold are applied dynamically over the image. This is more refined version of thresholding which contain changeable lightning circumstances in the image which arise by cause of firm brightness gradient or darkness [2].

Gravitational search algorithm is an optimization stemmer inspired by Newtonian gravity. In this algorithm, it consists of searcher agents which are collation of masses. Masses collaborate using a direct mode of connection, through

gravitational force of attraction. The stemmer is operated by accurately regulating the gravitational and inertia masses and individual mass exhibits a solution. The lighter mass move towards heaviest mass and then the heavier mass exhibits a best result in the search space [3].

2. LITERATURE SURVEY


In [1] authors presented solution using Newtonian Gravitational Edge Detection using Gravitational Search Algorithm and claimed to have optimization as per theoretical approach. However, there was no justification on the edge optimization. Search stemmer and universal law of gravity have been used for this algorithm. In this approach the edges are detected by applying the law of gravity and then squatting of agents is determined using gravitational search stemmer. It presents a minimal set of input data which is processed and though that it is conclude that the process becomes faster and memory competent [4]. S. Jansi *et.al.* proposed adaptive thresholding using ACO for edge detection and compared it with different edge detection algorithms by measuring their performance evaluation which demonstrates that SNR of proposed algorithm has better performance than other methods [5]. Kokila Jandial *et.al.* proposed approach which was capable to identify the edge pixel in a picture. It concludes that particular picture pixel is a celestial body with a mass expressed by its gray scale intensity. This approach was focused on optimization of edge detection problem [6]. Yusra A.Y. Al-Najjar and Den Chen Soong compared various techniques for measuring the quality of the image such as PSNR, HVS, SSIM, UIQI. This presents that the good IQM must be correct and concordant in anticipating the quality [7]. In [8] authors have reported document image binarization using GSA and TCM, to improve the PSNR.

3. ADAPTIVE THRESHOLDING BASED EDGE DETECTION

Thresholding is imperative technique in image segmentation. Thresholding is known as adaptive thresholding when a distinctive sample of threshold is used for distinct regions in the image. Local or dynamic thresholding is also known by adaptive thresholding. The adaptive threshold factor is used in irregular lightning surroundings where we segment an agile foreground part object against the background part object. As in traditional thresholding, the full image illumination is

considered but in many lightning conditions darkness or blurring of light originates thresholding problems. Adaptive thresholding implements binary thresholding by evaluating particular pixel corresponding to its local neighborhood. Generally, adaptive thresholding consider an input as a color picture or gray scale picture and performs straightforward

implementation which results a binary image in the output which depicts the edge information. For every pixel in the picture, a threshold has to be computed. If the intensity value of pixel is less than the threshold, it is assigned to the background value, otherwise it is assigned as the foreground value [8].

Fig: 1 Flowchart of edge detection using Adaptive Thresholding

4. GRAVITATIONAL SEARCH ALGORITHM

The invention of the Gravitational Search Algorithm was done by Rashedi et al., and has been used to solve optimization problems. It is well established that the algorithm, which are population based heuristic algorithm work on the law of gravity and mass interactions. This algorithm includes collection of search agents, which relates with each other through the gravity force. The agents are treated as objects and their performance is measured by their masses. The force generated by gravity causes a complete global movement where all objects move towards other objects with greater masses. The masses are actually obeying the law of gravity as shown in Equation (1) and the law of motion in Equation (2)

$$F = G (M_1 M_2 / R^2) \quad \dots \dots \quad (1)$$

$$a = F/M \quad \dots \dots \quad (2)$$

According to Equation no.1, F represents gravitational force magnitude, G stands for constant of gravity, M_1 and M_2 represents the mass of the first and second objects and R defines distance among the two objects. Equation no.1 represents that in the Newton gravitational law, the

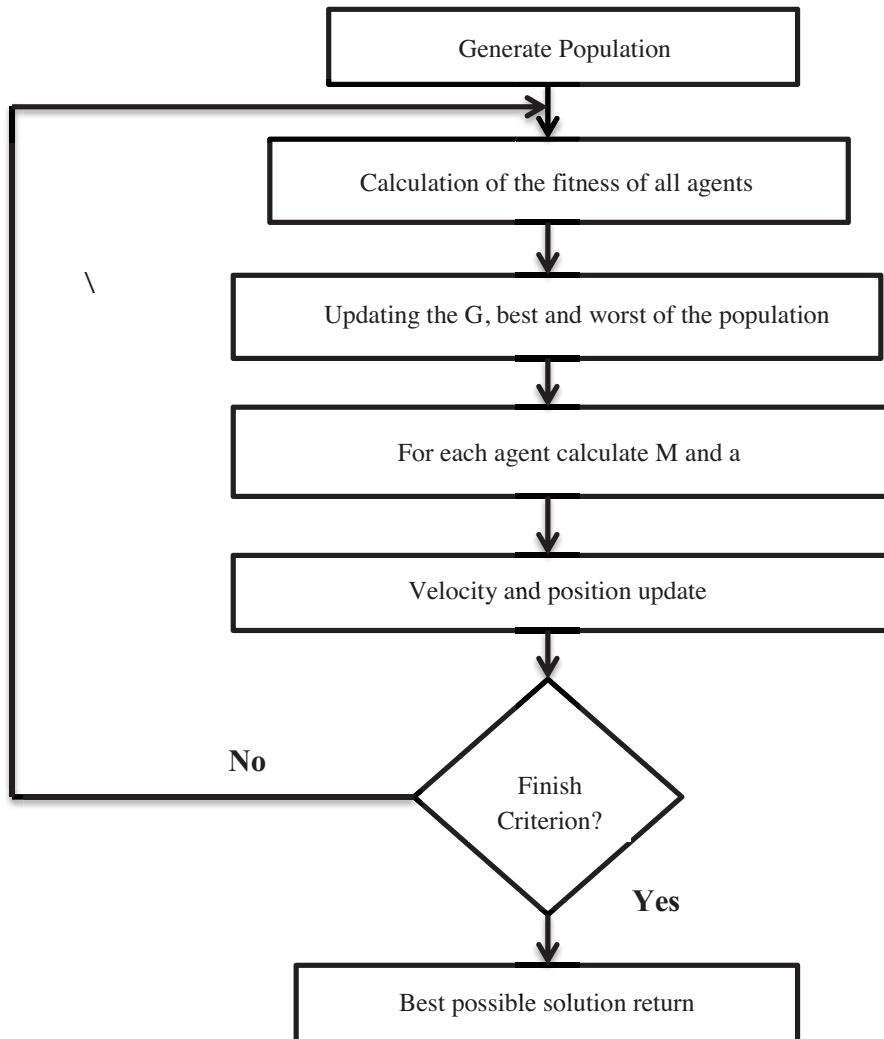
gravitational force among two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance among the objects. In reference to equation no. 2, the Newton's second law presents that the acceleration is determined by the force that acts on the object and by mass of the object.

In GSA, the various criteria which are described by agent are named as position, inertial mass, active gravitational mass, and passive gravitational mass. In this the location of the mass presents the result of the problem, whereas the gravitational and inertial masses are calculated using a function which is named as fitness function. The stemmer is operated by regulating the gravitational and inertia masses, whereas individual mass exhibits a result. Masses move towards the heaviest mass. Thus, the heaviest mass shows a best result in the search space [9]. GSA algorithm primarily includes of the following steps:-

Search space identification.

Initialization.

Agent estimation using fitness function.


Update $G(t)$, $best(t)$, $worst(t)$ and $M_i(t)$ for $i=1,2,\dots,N$.

Calculation of complete force in all possible directions.

Finding of acceleration and velocity.

Update agent's position.

Repeat all these steps until the stop criterion is approached. End.

Fig: 2 Flowchart of GSA

Proposed algorithm, which has been tested for the time complexity and other such parameters has been narrated below:

Algorithm

- Step 1 Reading of the image.
- Step 2 Initial processing of the image.
- Step 3 Evaluation using fitness function.
- Step 4 Update parameters- G (t), best (t), worst (t) and M (t).
- Step 5 Calculation of total force in all possible directions.
- Step 6 Now, using adaptive Thresholding.
- Step 7 Set the Threshold value.

Step 8 Evaluate the SSIM parameter with the edge map image.

5. Parameter Used for Comparison

In this paper, SSIM is used to measure the image quality of each edge, which were considered in both methods.

Structural Similarity Index Measurement (SSIM): The structural similarity index is a technique used for measuring picture quality. It measures picture aridity which depends on an original compressed or distortion-free picture as retrospection. It figures out the quality of a distorted image by computing the correlations in luminance, contrast and

structure locally between the reference and distorted pictures and averaging these quantities over the full image. It is a revised version of the universal image quality index. The SSIM index value varies between 0 and 1. The value nearest to 1 shows the maximal accordance with the original images [10]. The SSIM Index quality assessment is leaned on the estimation of three premises which are luminance, contrast

6. EXPERIMENTAL ANALYSIS

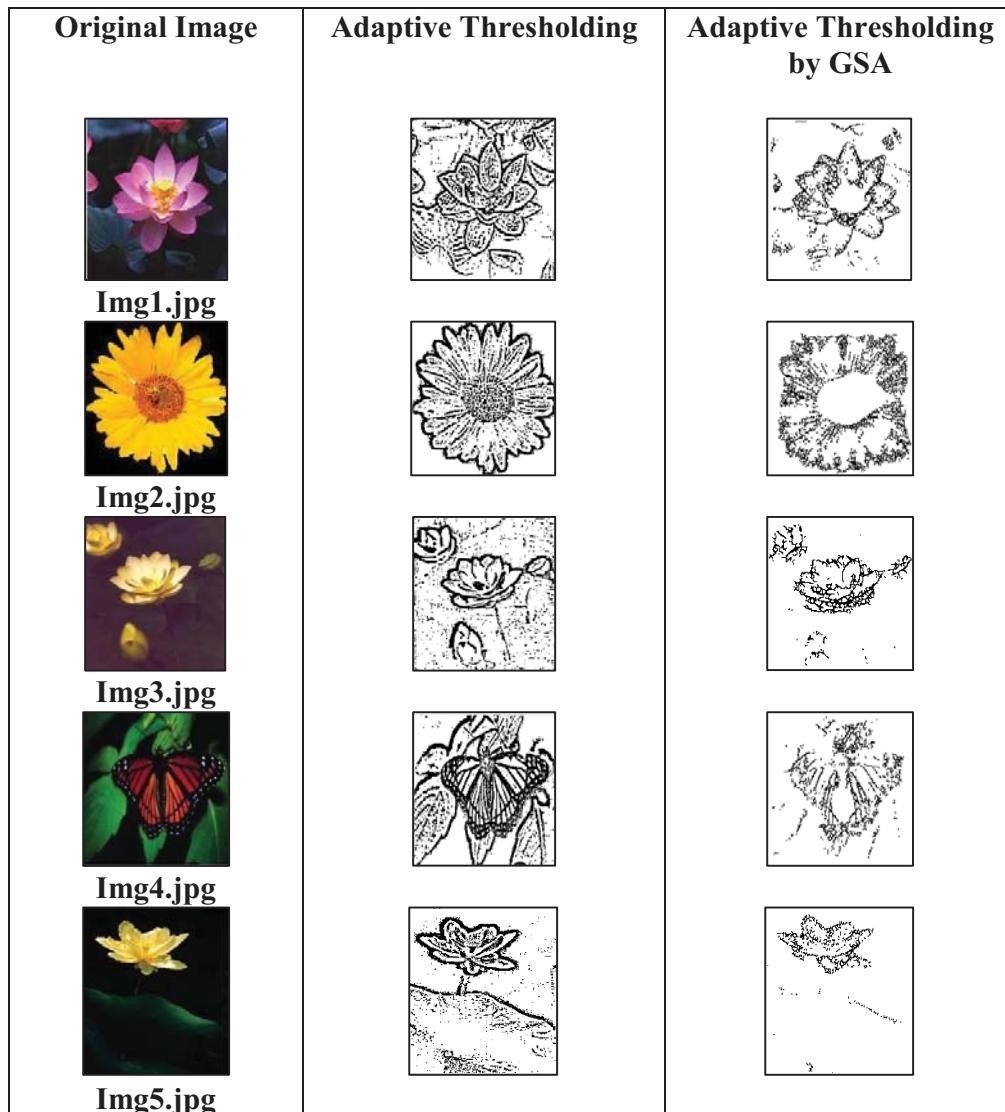


Figure 3: experimental results using adaptive thresholding

and structural. The global index is a multiplicative consolidation of the three terms.

$$SSIM(x, y) = [l(x, y)]^\alpha \cdot [c(x, y)]^\beta \cdot [s(x, y)]^\gamma$$

The given equation is clear for the terms used in multiplicative features of the image.

The experimental images as shown in figure above clearly shows the improvement at various stages and has produced results as per the prediction.

7. RESULT ANALYSIS

The implementation has produced the results, which can be analysed as has been given in the table below. It is clear from the analysis that the thresholding technique as discussed is better and viable.

Image	Adaptive Thresholding	Adaptive Thresholding by GSA
Img1.jpg	0.87029	0.96797
Img2.jpg	0.87254	0.91648
Img3.jpg	0.86142	0.96394
Img4.jpg	0.88534	0.98659
Img5.jpg	0.85798	0.98377

8. CONCLUSION

Edge is a basic feature of an image. In this paper, the investigation has been done on image quality on a selected test images using edge detection by adaptive thresholding and gravitational search algorithm along with adaptive thresholding based on Structural Similarity Index (SSIM) parameter, which demonstrates that using gravitational search algorithm with adaptive thresholding has a superior image quality and better Structural Similarity Index (SSIM) value.

REFERENCES

- [1] Om Prakash Verma and Rishabh Sharma, "Newtonian Gravitational Edge Detection using Gravitational Search Algorithm", International Conference on Communication Systems and Network Technologies, IEEE International Conference on Communication Systems and Network Technologies, pp.184-188, May 2012.
- [2] Om Prakash Verma, Rishabh Sharma, Manoj Kumar, Neetu Agrawal, "An Optimal Edge Detection using Gravitational Search Algorithm", Lecture Notes on Software Engineering, Vol.1, pp.148-152, May 2013.
- [3] Muthukrishnan.R and M. Radha, "Edge Detection Techniques for Image Segmentation", International Journal of Computer Science and Information Technology, Vol.3, pp.259-267, Dec 2011.
- [4] Nisha, Rajesh Mishra, Lalita Sharma, "Comparative analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing", International Journal of Engineering Trends and Technology, Vol.28, pp.48-53, Oct 2015.
- [5] S.Jansi and P.Subashini, "Optimized Adaptive Thresholding based Edge Detection Method for MRI Images", International Journal of Computer Applications, Vol.51, pp.1-8, Aug 2012.
- [6] Kokila Jandial, Nitika Kapoor, Harish Kundra, "Edge detection based on the theory of Universal gravity: Implementation in MATLAB", Journal of Academia and Industrial Research, Vol.2, pp.53-56, June 2013.
- [7] Yusra A.Y. Al-Najjar and Den Chen Soong, "Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI", International Journal of Scientific & Engineering Research, Vol.3, Pp.1-5, Aug 2012.
- [8] Om Prakash Verma, Preerna Singhal, Sakshi Garg, Deepa Singh Chauhan, "Edge Detection using Adaptive Thresholding and Ant Colony Optimization", Information and Communication Technologies (WICT), 2011 World Congress, IEEE, Pp.313-318, Dec 2011.
- [9] Jyoti Rani and Davinder Parkash, "Document Image Binarization using GSA & TCM", International Journal of Multidisciplinary and Current Research, Vol.3, Pp.1235-1241, Dec 2015.
- [10] D. Ravichandran, Ramesh Nimmatoori, Ashwin Dhivakar M R, "A Study of Medical Image Quality Assessment Based on Structural Similarity Index (SSIM)", International Journal on Advanced Computer Theory and Engineering, Vol.5, Pp.31-38, 2016.
- [11] Lei Zhai, Shouping Dong, Honglian Ma, "Recent Methods and Applications on Image Edge Detection", International Workshop on Education Technology and Training, pp.1-5, 2008.
- [12] Mohd Sabri, Mazidah Puteh, and Mohamad Rusop Mahmood, "A Review of Gravitational Search Algorithm Norlina", International Journal on Advance. Soft Computing Applications, Vol. 5, No. 3, November 2013.
- [13] Anmin Liu, Weisi Lin and Manish Narwaria, "Image Quality Assessment Based on Gradient Similarity", IEEE Transactions on Image Processing, Vol. 21, No.4, pp.1500-1512, 2011.
- [14] Mirela (Visan) Punga, Simona Moldovanu and Luminita Moraru, "Structural Similarity Analysis for Brain MR Image Quality Assessment", AIP Conference Proceedings, 1634, pp.137-143,,2014.
- [15] Kashyap Swathi Rangaraju, Kishor Kumar, C H Renumadhavi, "Review Paper on Quantitative Image Quality Assessment – Medical Ultrasound Images", International Journal of Engineering Research & Technology (IJERT) Vol. 1 Issue 4, pp.1-6, June 2012.