

Lecture Notes in Electrical Engineering

Volume 476

Board of Series editors

Leopoldo Angrisani, Napoli, Italy
Marco Arteaga, Coyoacán, México
Bijaya Ketan Panigrahi, New Delhi, India
Samarjit Chakraborty, München, Germany
Jiming Chen, Hangzhou, P.R. China
Shanben Chen, Shanghai, China
Tan Kay Chen, Singapore, Singapore
Rüdiger Dillmann, Karlsruhe, Germany
Haibin Duan, Beijing, China
Gianluigi Ferrari, Parma, Italy
Manuel Ferre, Madrid, Spain
Sandra Hirche, München, Germany
Faryar Jabbari, Irvine, USA
Limin Jia, Beijing, China
Janusz Kacprzyk, Warsaw, Poland
Alaa Khamis, New Cairo City, Egypt
Torsten Kroeger, Stanford, USA
Qilian Liang, Arlington, USA
Tan Cher Ming, Singapore, Singapore
Wolfgang Minker, Ulm, Germany
Pradeep Misra, Dayton, USA
Sebastian Möller, Berlin, Germany
Subhas Mukhopadhyay, Palmerston North, New Zealand
Cun-Zheng Ning, Tempe, USA
Toyoaki Nishida, Kyoto, Japan
Federica Pascucci, Roma, Italy
Yong Qin, Beijing, China
Gan Woon Seng, Singapore, Singapore
Germano Veiga, Porto, Portugal
Haitao Wu, Beijing, China
Junjie James Zhang, Charlotte, USA

**** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS, MetaPress, Springerlink ****

Lecture Notes in Electrical Engineering (LNEE) is a book series which reports the latest research and developments in Electrical Engineering, namely:

- Communication, Networks, and Information Theory
- Computer Engineering
- Signal, Image, Speech and Information Processing
- Circuits and Systems
- Bioengineering
- Engineering

The audience for the books in LNEE consists of advanced level students, researchers, and industry professionals working at the forefront of their fields. Much like Springer's other Lecture Notes series, LNEE will be distributed through Springer's print and electronic publishing channels.

For general information about this series, comments or suggestions, please use the contact address under "service for this series".

To submit a proposal or request further information, please contact the appropriate Springer Publishing Editors:

Asia:

China, *Jessie Guo, Assistant Editor* (jessie.guo@springer.com) (Engineering)

India, *Swati Meherishi, Senior Editor* (swati.meherishi@springer.com) (Engineering)

Japan, *Takeyuki Yonezawa, Editorial Director* (takeyuki.yonezawa@springer.com)
(Physical Sciences & Engineering)

South Korea, *Smith (Ahram) Chae, Associate Editor* (smith.chae@springer.com)
(Physical Sciences & Engineering)

Southeast Asia, *Ramesh Premnath, Editor* (ramesh.premnath@springer.com)
(Electrical Engineering)

South Asia, *Aninda Bose, Editor* (aninda.bose@springer.com) (Electrical Engineering)

Europe:

Leontina Di Cecco, Editor (Leontina.dicecco@springer.com)
(Applied Sciences and Engineering; Bio-Inspired Robotics, Medical Robotics, Bioengineering; Computational Methods & Models in Science, Medicine and Technology; Soft Computing; Philosophy of Modern Science and Technologies; Mechanical Engineering; Ocean and Naval Engineering; Water Management & Technology)

(christoph.baumann@springer.com)

(Heat and Mass Transfer, Signal Processing and Telecommunications, and Solid and Fluid Mechanics, and Engineering Materials)

North America:

Michael Luby, Editor (michael.luby@springer.com) (Mechanics; Materials)

More information about this series at <http://www.springer.com/series/7818>

Vijay Nath · Jyotsna Kumar Mandal
Editors

Proceeding of the Second
International Conference
on Microelectronics,
Computing &
Communication Systems
(MCCS 2017)

Springer

Editors

Vijay Nath
Department of Electronics and
Communication Engineering
Birla Institute of Technology, Mesra
Ranchi, Jharkhand
India

Jyotsna Kumar Mandal
Department of Computer
Science and Engineering
University of Kalyani
Kalyani, West Bengal
India

ISSN 1876-1100

ISSN 1876-1119 (electronic)

Lecture Notes in Electrical Engineering

ISBN 978-981-10-8233-7

ISBN 978-981-10-8234-4 (eBook)

<https://doi.org/10.1007/978-981-10-8234-4>

Library of Congress Control Number: 2018935883

© Springer Nature Singapore Pte Ltd. 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Modern complex ICs' design is complicated. As on average up to 2015 in desktop, more than 1 billion of transistors existed. For complete design having more than 500 rules and it's in statistical nature. As per the demand of the market for sophisticated systems, designers/engineers are playing with automated EDA software tools for efficient and bulk design. For these purposes, different automated EDA software have been launched such as cadence and mentor graphics. From these tools, designers are preparing full-custom and semicustom ICs. These tools consider the length of the transistor in nanometer range. These range-designed ICs required good support of nanomaterials and its related chemicals. Testing of ICs is also a major issue in sophisticated systems. Without software support, testing is difficult. Nanotechnology allowed the integration of purely electronic devices, chips, circuits and systems. The nanoscale dimensions of nanoelectronic components for systems for giga-scale complexity are measured on a chip or in a package. Nanotechnology improves the capabilities of electronic components by reducing the size of transistors in ICs, increases the density of memory chips, reduces the power consumption and improves the display screen, thickness, etc. In global automation, control and functional environment IoT is playing a major role today. Now, you can imagine a single example—cashless world. The computing systems which are playing behind the cashless world is more reliable, robust, correct and highly accurate. Now, this system is going to adopt smart education system for making a global education hub. This setup already adopted in global factory operation, control and monitoring for perfect and optimized products. This conference provides an excellent forum for young researchers, engineers and professors to work together and share their knowledge. It also gives the ideas on how to work in electronic media safely and securely. Manufacturing companies/industries and education universities have well contribution in the development of any countries. However, they face several challenges such as rapid product development, flexibility, low-to-medium volume, transportation and low cost. Many advanced/unconventional technologies/tools/software are being developed worldwide to face these challenges. Among recent technologies IC design and manufacturing, Internet of Things has become more popular due to the ability of precise work. For the research, development, sharing

knowledge and exchange of ideas in the current trends, the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS-2017) has been organized by Indian Society for VLSI Education (ISVE) Ranchi at Advanced Regional Telecom Training Centre (ARTTC) near Jumar River Hazaribagh Road Ranchi from 13 to 14 May 2017 and 2nd IC-NCCS-2016 organized from 11 to 12 December 2016 at the same venue. These conferences cover advancement in MEMS and nanoelectronics, wireless communications, optical communication, instrumentation, signal processing, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems, sensor network applications in mines, etc. Population of the countries are increasing day by day, then the duty of the society to provide all types of facility to the new users for serving their life efficiently. It is possible with the help of research and development only.

In this conference 350 papers and 50 chapters in pedagogy (Washington Accord) was received, in which 67 blindly peer-reviewed, registered and presented papers were accepted for publication in conference proceeding of Springer Scopus book series Lecture Notes in Electrical Engineering (LNEE) and 10 outstanding papers were selected for SCI Journals like *Microsystem Technologies* and *IETE Technical Review & Technical Research*, etc. In parallel conference, excellent reviewer's team guided authors for the extended version of the research articles, i.e. 70–80% improvement/changes with new content and title forward for the publication in listed SCI and Scopus journals. All articles are blindly peer-reviewed by at least three reviewers and details comments have been passed to concern authors with decisions. In presentation session, six expert reviewers' team evaluated their work. They also guided the authors for IPR/patents and new innovative project for funding in their area of research. These series of conferences (NCCS & MCCS) organized by ISVE & IETE Ranchi in support of ARTTC BSNL Ranchi gave a unique platform to young researchers, scientists, engineers and professors for the presentation of their work worldwide. This platform provides outcome-based learning and research strategy. Pedagogy method gives new ideas to the learner to enhance their knowledge in scientific research. This technique is highly beneficial to students, researchers, professors and industrial people to recognize or evaluate the value of their work.

In the conference on dais, Chief Guest Dr. R. K. Pandey, VC, Ranchi University, Ranchi; Guest of Honour Dr. K. K. Thakur, CGMT, BSNL Ranchi; Guest of Honour Dr. A. A. Khan, Former VC, Ranchi University, Ranchi; Dr. R. K. Singh, Former Chairman, IETE Ranchi; Guest of Honour Sh. Sanjay Kumar Jha, Past Chairman, IETE, Ranchi, and Chief Executive Engineer, Government of Jharkhand; Guest of Honour Dr. P. R. Thakura, Professor, BIT Mesra, and Executive Member, ISVE & IETE, Ranchi; Sh. Ajay Kumar, Chairman, IETE, Ranchi & AGM(Admin), ARTTC BSNL, Ranchi; Dr. Anand Kumar Thakur, Faculty, SSMC RU & Organizing Secretary, MCCS-2017; Dr. Raj Kumar Singh, Faculty, RLSYC RU & Convenor MCCS-2017, Ranchi; Dr. Vijay Nath, Faculty, BIT Mesra & General Chair, MCCS-2017; Keynote Speaker Dr. A. Srinivasulu,

Professor, Vignan University, Guntur (AP) were present. The conference began with welcome address by Dr. Vijay Nath, General Chair of the conference, and keynote address by Prof. A. Srinivasulu, Vignan University Guntur, AP, on the topic “VLSI Design and Challenges”. All other dignitaries gave their views for the growth of society, quality of publications, research innovations and challenges.

In this conference, the authors are invited for the original papers submission and the quality of papers has been selected for presentation. The authors described their articles in above-mentioned domain very well. Mohan Kashyap et al. explain their research article “Optimal Placement of Distributed Generation Using Genetic Algorithm Approach”. Piyush Kumar Ojha et al. demonstrate their work on “Analysis of Voltage Source Boost Inverter”. Rahul Sharma et al. explain their research article “Reduction of Redundant Frames in Active Wireless Capsule Endoscopy”. Pritha Roy et al. explain their research work on “A Study on Filter Design Aspects of Single Phase Inverter with Various Modulation Schemes”. Maninder Kaur et al. demonstrate their work on “Design, Analysis and Testing of Low Voltage CMOS OTA”. Sumit Srivastava et al. demonstrate their research article “Speech Based Access to Price of Different Agricultural Commodities Using MFCC, GMM and Naïve Bayes Classifier”. Shahid Aziz et al. demonstrate their work as per the current demand of market “Dual Axis Solar Tracker for Solar Panel with Wireless”. Naghma Khatoon et al. demonstrate their work on “A Node Stability Based Multi-metric Weighted Clustering Algorithm for Mobile Ad-Hoc Networks”. Kumari Mamta et al. explain their work on “Design and Development of Microstrip Patch Antenna for Millimeter-Wave Application”. Chitrata Saha et al. introduce their work on “Review on Fault Tolerant Control (FTC) and Fault Detection & Isolation (FDI) Schemes of Wind Turbine”. Ankita et al. explain their work on “A Comprehensive survey on Computational Grid Resource Management”. Kanchan Bala et al. introduce their research work on “Thunderstorm Prediction Using Soft Computing and Wavelet”. Mohammad Javeed et al. define their work on “Design of a Clock Distribution Network Using Low Power Prescaler and Fused P & S Counters”. K. Rama Devi et al. demonstrate their research article “Design of RFID Tag Antenna with Impedance Matching Techniques at UHF Band”. Chandrashekhar Azad et al. introduce in their research article “Decision Tree and Genetic Algorithm Based Intrusion Detection System”. B. Jayalakshmi et al. explain “A Novel Method of Designing Using Non-logical Algorithm”. Annu Priya et al. explain in their research article “A Novel Multimedia Encryption and Decryption Technique Using Binary Tree Traversal”. Malladi Lakshmi Lavanya et al. demonstrate their research work on “ZC-CDTA Based Integrator Circuit Using Single Passive Component”. Saka Harshavardhan et al. explain “Road and Traffic Sign Detection Using Colour Segmentation”. Pawan Kumar et al. explain “Switch in Based Trimmed Median Filter for Noise Removal from Medical Image”. Surya Gupta et al. introduce their research article “Characterization of Interfering Signal in S Band of IRNSS”. Sandip Kumar Singh Modak et al. present their article “Enhancing Multibiometric System Security Using ECC Based on Score Level Fusion”. Santhoshi Rupa Gayatri Neralla et al. present their article “Generation of Photographic Mosaic Using Apache Spark and Scalding for Image Processing”.

Nibha Rani et al. introduce “Mitigation of Congestion in Transmission Line Using Series Smart Wire”. Naghma Khatoon et al. explain their research article “Mobility Aware Distributed Clustering and Routing Algorithm Based on A* Search for Mobile Ad-Hoc Networks”. Meena Singh presents her research article “Floating Admittance Matrix Model Development of Active Devices and Circuits”. Ravi Devesh et al. demonstrate “An Efficient Approach for Monuments Image Retrieval Using Multi-visual Descriptors”. Ruchira et al. present “Comparison of ANN based MPPT Controller and Incremental Conductance for Photovoltaic System”. Sneha Mangalwedhe et al. introduce “Low Power Implementation of 32-Bit RISC Processor with Pipelining”. Bollampally Joy Persis et al. present their research work on “A Novel SINR Based Cooperative Radio Resource Allocation Mechanism (SBC-RRAM) for LTE/Wi-Fi Radio Access System in Smart Home Environment”. Pallavi Choudekar et al. present their work on “Optimal Location of Thyristor Controlled Series Compensator to Assuage Congestion in Transmission Network”. Priyanka Gupta et al. explain “An Efficient Brightness Preserving Contrast Enhancement Technique Using Discrete Wavelet Transform and Singular Value Decomposition”. Ruhi Dubey et al. introduce their research article “Computer Assisted Valuation of Descriptive Answers Using WEKA with Random Forest Classification”. Shaik Qadeer et al. present a chapter on “VLSI Signal Processing”. Debaprasad De et al. present a chapter on “Ramanujan Sums and Signal Processing: An Overview”. Akshaya R. et al. introduce “Analysis and Design of Bandgap Reference (BGR)”. Avireni Srinivasulu et al. introduce the chapter “FinFET Based Negative Rectifiers for Low-Power Analog Applications”. Sonali B. Wankhede et al. introduce “Denial of Service Attacks”. Trilok Kumar Parashar et al. introduce “Analytical Modelling of Room Temperature GaAs/InAs_{0.3}Sb_{0.7} Detector for H₂S Gas Detection”. Om Prakash et al. describe the “Fuzzy Prediction Model for Water Temperature in Scheffler Solar Reflector”. Anil Pinapati et al. introduce “A Reversible Data Hiding Using Difference-Histogram Modification on Multi-directional in Two-Dimensional Histogram”. Chandan Kumar et al. describe “A Novel Single-phase Multilevel Inverter Topology with Reduced Component Count”. K. Srilakshmi et al. demonstrate “Energy Efficient 64-Bit Asynchronous Adder”. Gourab Das et al. demonstrate “PV Array’s Resistance & Temperature Sensitivity Analysis with Shading Effects”. Sukesha et al. explain the “Effect of Location of Piezoelectric Sensor Over a Smart Structure”. Dipti Kumari et al. introduce “A Systematic Approach Towards Development of Universal Software Fault Prediction Model Using Object-Oriented Design Measurement”. Varun Bohra et al. introduce “Design and Implementation of a Reaction Timer Using CMOS Logic”. Shubham Goswami et al. describe “A Novel Hybrid Resource Allocation Scheme for Maximum Fairness Among Multiple Services”. Aditya S. Sengupta describes the “Modelling Equivalent Circuit for Supercapacitor Module Voltage Decay”. Rajinder Tiwari et al. demonstrate “An Innovative Design Approach of SoC Based Smart CMOS Sensor for Mixed Signal Processing Based Applications”. Priyanka Parihar et al. describe the “Investigation of MTCMOS 6T SRAM Cell for Ultra Low Power Application”. Neha Gupta et al. describe “Novel Approach for Sleep Transistor Sizing to Suppress Power and Ground Bounding Noise in

MTCMOS Clustering Technique”. Mukesh Patidar et al. describe “Efficient Design and Simulation of Novel Exclusive-OR Gate Based on Nano-electronics Using Quantum Dot Cellular Automata”. Anup Tiwari et al. demonstrate the “Design Strategy for Smart Toll-Billing Systems”. Sanket P. Singhania et al. describe the “Novel Cell Search Method in Long Term Evolution System”. Sukesh Sharma et al. describe the “Various Feature Extraction and Classification Techniques”. Abhinav Kumar et al. explain the “Path Tracking Method of ALV Based on ADRC Strategy and Differential Flatness Theory”. Ravneet Kaur et al. describe the “Performance Analysis of Conventional SRAM with Higher Order SRAM Topologies”. Shashank Shekhar et al. demonstrate the “Performance Analysis of Time-Reversal Division Multiple Access Under Multi-path Rician Fading Channels”. Amninder Singh et al. introduce the “Analysis of Software Development Life Cycle Models”. Sumit Singh et al. explain the “Design of Narrowband 2.69 GHz CMOS Low Noise Amplifier for WiMAX Application”. Sarita Kumari et al. describe the “Sensitivity Analysis of Various Magneto-Optic Materials Based on Faraday Rotation Principle”. Anil Kumar et al. describe “A Secure Three—Way Handshake Authentication Process in IEEE 802.11i”. Gireesh Joshi et al. explain the “BrowserGuard2: A Solution for Drive-By-Download Attacks”. Nishat Aafreen et al. demonstrate the “GA Based Energy Optimization in Traffic Grooming WDM Optical Mesh Network”. Oshin Garg et al. define the “Piezoelectric Energy Harvesting: A Developing Scope for Low Power Applications”. Deepak Prasad et al. explain “An Overview of CMOS Temperature Sensors”. Abhishek Pandey et al. demonstrate “A 3.65 mW, Op-Amp Based Up-Conversion Mixer for Zigbee Front-End Transmitter”. Vijay Kumar Karan et al. explain “Adaptive Compensation Algorithm for Flux Estimation of PM BLDC Motor Drives”. A. Srinivasulu et al. demonstrate the “Performance Analysis of Inter-Satellite Optical Wireless Communication Using 12 and 24 Transponders”. These articles are helpful for the product development of smart ICs.

The authors and editors have taken utmost care in presenting the information and acknowledging the original sources whenever necessary. The editors express their gratitude towards the authors, organizers of IC-MCCS and staff of Springer, India, for making the publication of this research book/proceeding possible. Readers are requested to provide their valuable feedback on the quality of presentation and inadvertent error or omission of information if any. We expect that the book will be welcomed by students as well as practicing engineers/researchers/professors.

Ranchi, India
Kolkata, India

Vijay Nath
Jyotsna Kumar Mandal

Organizing Committee

Patron

- Dr. A. K. S. Chandele, President, IETE, New Delhi

Chairman Committee

- Sh. V. B. Pandey, DOT BSNL Term Cell1 & Chairman, ISVE, Ranchi
- Sh. Ajay Kumar, AGM(HR) BSNL & Chairman, IETE, Ranchi
- Prof. P. S. Neelakanta, C. Engg., Fellow IEE, Florida Atlantic University (FAU), USA.
- Prof. J. K. Mondal, Professor, Kalyani University, WB
- Prof. C. K. Sarkar, Chairman, IEEE Kolkata Section, WB
- Prof. Vinay Gupta, Professor, Delhi University, Delhi
- Sh. Sanjay Kumar Jha, Past Chairman, IETE, Ranchi
- Prof. Subir Sarkar, Professor, Jadavpur University, WB

Co-chairman Committee

- Dr. Umesh Yadav, DDU GU
- Sh. Rajan Kumar Ram, ARTTC BSNL, Ranchi
- Dr. R. K. Singh Founder Chairman, IETE, Ranchi
- Dr. Anshuman Sarkar, Kalyani Government Engineering College, Kalyani, WB

Organizing Secretary

- Dr. Anand Kr. Thakur, SSMC RU & Treasurer, IETE, Ranchi

General Chair

- Dr. Vijay Nath, BIT Mesra & Secretary, IETE, Ranchi

Convener

- Dr. Raj Kumar Singh, RLYC RU & Executive Mem IETE Ranchi

International Advisory Committee

- Prof. Bernd Michel, Micro Materials Centre (MMC) Berlin, Germany
- Prof. Bharath Bhushan, Ohio Eminent Scholar & The Howard D. Winbigler Professor, Director NBLL, The Ohio State University, Columbus, Ohio, USA
- Smt. Smriti Dagur, Former President, IETE, New Delhi
- Dr. A. A. Khan, Former VC, Ranchi University, Ranchi
- Dr. M. K. Mishra, VC, BIT Mesra, Ranchi
- Dr. K. K. Thakur, CGM, BSNL, Ranchi
- Dr. Ramgopal Rao, Professor, Director, IIT Delhi
- Dr. P. K. Barhai, Former VC, BIT Mesra, Ranchi
- Dr. S. Pal, Professor & SD, Satellite Navigation, ISRO, Bangalore
- Dr. M. S. Kori, Chairman IETE, TPC, New Delhi
- Sh. R. K. Gupta, Former President, IETE, New Delhi
- Dr. Rajendra Prasad, Professor, IIT Roorkee
- Dr. Labh Singh, Former CGM, ARTTC, BSNL, Ranchi
- Sh. R. Mishra, Former CMD, HEC, Ranchi
- Dr. Yogesh Singh Chauhan, Associate Professor, Nano Lab, Department of EE, IIT Kanpur
- Dr. S. N. Verma, Former CMD, EDC, Ltd. Jharkhand
- Sh. S. C. Thakur, Chief Engineer, Rural Electrification Energy Distribution Corporation Limited Jh.
- Sh. Ravindra Kr. Rakesh, Editor, Dainik Bhaskar, Jharkhand
- Sh. Gopal Jha, Journalist, New Delhi
- Dr. A. N. Mishra, VC, Central University, Jharkhand
- Dr. R. Pandey, VC, RU, Ranchi
- Dr. A. Chakrabarty, Professor, IIT Kharagpur
- Dr. S. Banerjee, Professor, IIT Kharagpur
- Dr. Nandita Das Gupta, Professor, IIT Chennai
- Dr. L. K. Singh, Former Professor, Dr. RML AU, Faizabad
- Dr. B. S. Rai, Professor, MMMUT, Gorakhpur
- Dr. D. Samathanam, Former Adviser & Head TDT, DST New Delhi
- Dr. P. Chakrabarty, Professor, IIT BHU
- Dr. G. A. Murthy, Scientist-G, DRDO, Hyderabad
- Dr. M. Srinivasa, Scientist-G, DRDO, Hyderabad
- Dr. S. C. Bose, Scientist-G, CEERI, Pilani
- Dr. Jamir Akhatar, Sr. Scientist, CEERI, Pilani
- Dr. Arokiaswami ALPHONES, Vice-Chairman, IEEE Singapore Section & Professor, NTU, Singapore
- Dr. K. Rajasekhar, Dy. Director General, NIC, DEIT, Mo CIT, Government of India, Hyderabad

- Dr. N. V. Kalyankar, Principal, Yeshwant Mahavidyalaya, Nanded
- Dr. R. P. Panda, Professor, VSSUT, Burla, Odisha
- Dr. Allen Klinger, Professor, University of California
- Dr. Hisao Ishibuchi, Professor, Osaka Prefecture University, Japan
- Dr. T. K. Bhattacharya, Professor, IIT Kharagpur
- Dr. N. Gupta, Professor, BIT Mesra, Ranchi & Fellow Member, IETE, New Delhi
- Dr. V. R. Gupta, Professor, BIT Mesra, Ranchi & Fellow Member, IETE, New Delhi
- Dr. M. Chakrabarty, Professor, IIT Kharagpur
- Dr. A. S. Dhar, Professor, IIT Kharagpur
- Dr. D. K. Sharma, Professor, IIT Bombay
- Dr. Nandita Das Gupta, Professor, IIT Chennai
- Dr. B. Mishra, Professor, BIT Mesra, Ranchi
- Dr. Swaroop Gosh, Assistant Professor, University of South Florida
- Dr. S. P. Maity, Professor, IIEST, Shibpur
- Dr. S. K. Ghorai, Professor, BIT Mesra, Ranchi & Executive Member, IETE, Ranchi Centre
- Dr. M. Bhuyan, Professor, Tezpur University, Assam
- Dr. S. Hosimin Thilangar, Professor, Anna University, Chennai
- Dr. V. N. Mani, Senior Scientist, CMET, Hyderabad
- Dr. V. Kumar, Professor, ITT-ISM, Dhanbad
- Dr. S. K. Paul, Professor, ISM, Dhanbad
- Dr. J. P. Gupta, Former Pro-VC, DDU Gorakhpur University
- Dr. H. C. Prasad, Former Professor, DDU Gorakhpur University
- Dr. S. Bhaumik, Associate Professor, NIT, Tripura
- Dr. P. D. Kashyap, Professor, NIT, Arunachal Pradesh
- Dr. J. Akhatar, Senior Scientist, CEERI, Pilani
- Dr. S. Ahmad, Former Director, CEERI, Pilani
- Dr. P. Kapoor, Former Director, CSIO, Chandigarh
- Dr. Uma Maheshwari, Professor, Anna University
- Dr. Sandip Rakshit, Professor, Kaziranga University, Assam
- Dr. Abhijit Biswas, Professor, Institute of Radio Physics & Electronics, Calcutta University
- Dr. Vikash Patel, SAC ISRO, Ahmedabad
- Dr. Parul Patel, SAC ISRO, Ahmedabad

National Advisory Committee

- Dr. Gaurav Trivedi, Assistant Professor, IIT Guwahati
- Dr. B. K. Kaushik, Associate Professor, IIT Roorkee
- Dr. K. K. Khatua, Associate Professor, NIT Rourkela
- Dr. M. Bhaskar, Associate Professor, NIT Trichy
- Dr. P. Kumar, Associate Professor, IIT Patna
- Dr. Soumya Pandit, Assistant Professor, Kolkata University

- Dr. Soma Berman, Assistant Professor, University of Calcutta
- Dr. K. B. Raja, Professor, Bangalore College of Engineering, Bangalore
- Dr. R. P. Panda, Professor, VSSUT, Burla, Odisha
- Dr. P. R. Thakua, Associate Professor, BIT Mesra, Ranchi
- Dr. S. S. Solanki, Associate Professor, BIT Mesra, Ranchi
- Dr. Mahesh Chandra, Associate Professor, BIT Mesra, Ranchi
- Dr. D. K. Malik, Associate Professor, BIT Mesra, Ranchi
- Dr. Nutan Lata, Associate Professor, BIT Mesra, Ranchi
- Dr. K. K. Senapati, Assistant Professor, BIT Mesra, Ranchi
- Dr. K. K. Patnaik, Associate Professor, IIITM Gwalior
- Dr. M. Goswami, Associate Professor, IIIT Allahabad
- Dr. Sukalayam Chakraborty, Assistant Professor, BIT Mesra, Ranchi
- Dr. Lallan Yadav, Associate Professor, DDU University, Gorakhpur
- Dr. S. Chakrabarty, Associate Professor, BIT Mesra, Ranchi
- Dr. D. Devaraj, Professor, Kalasalingam University, Tamil Nadu
- Dr. J. S. Roy, Professor, KIIT, Bhubaneswar
- Dr. N. K. Kamila, Professor, CVRCE, Bhubaneswar, Odisha
- Dr. B. K. Ratha, Associate Professor, Utkal University, Odisha
- Dr. A. Srinivasulu, Professor, Vignan University, Andhra Pradesh
- Dr. Manish Prateek, Professor, Petroleum University, Dehradun
- Dr. Vijay Laxmi, Associate Professor, BIT Mesra, Ranchi
- Dr. V. K. Jha, Associate Professor, BIT Mesra, Ranchi
- Dr. R. K. Lal, Associate Professor, BIT Mesra, Ranchi
- Dr. L. B. Singh, Professor, RPSIT, Patna
- Sh. H. S. Gupta, Senior Scientist ISRO, Bangalore
- Dr. N. S. Rao, Associate Professor, MECS, Hyderabad
- Dr. Usha Mehta, Professor, Nirma Institute of Technology, Ahmedabad

Technical Programme Committee

- Dr. Kota Solomon Raju, Scientist-F, CEERI, Pilani
- Dr. Amalin Prince, Associate Professor, BITS, Pilani, Goa Campus
- Dr. M. Mishra, Assistant Professor, DDU University, Gorakhpur
- Dr. J. B. Sharma, Associate Professor, Rajasthan Technical University, Kota
- Dr. Prabir Saha, Assistant Professor, NIT Meghalaya
- Dr. S. P. Tiwari, Assistant Professor, IIT Jodhpur
- Dr. Santosh Vishvakerma, Associate Professor, IIT Indore
- Dr. S. N. Shukla, Professor, Dr. RML Avadh University, Faizabad
- Dr. B. N. Sinha, Associate Professor, SSMC, Ranchi
- Dr. V. S. Rathore, Assistant Professor, BIT Mesra, Ranchi
- Dr. Manish Kumar, Assistant Professor, NERIST
- Dr. A. N. Jadhav, Professor, Y.M. R.T. Marathwada University, Nanded

Joint Secretary

- Prof. D. Acharya, PIET, Rourkela
- Prof. Rajeev Ranjan, ISM, Dhanbad
- Prof. Amar Prakash Sinha, BIT, Sindri
- Prof. Jayant Pal, NIT, Agarpara, Kolkata
- Prof. Adesh Kumar, Energy & Petroleum University, Dehradun
- Prof. J. Dinesh Reddy, BMS College of Engineering, Bangalore
- Prof. N. Srinivasa Rao, BMS College of Engineering, Bangalore
- Prof. P. Kumar, CIT, Ranchi
- Sh. Ramkrishna Kundu, IBM, Bangalore
- Sh. Dipayan Gosh, GM Aircel, Kolkata
- Sh. S. Chakrabarty, IBM, Bangalore
- Prof. Jyoti Kumari, RBS, Bangalore
- Sh. Rahul Kumar Singh, ST Microelectronics, Noida
- Sh. Suraj Kumar, NIT Agartala
- Prof. Anand Kr. Singh, GNIT, Ghaziabad

Treasurer

- Dr. Anand Kr. Thakur, IETE, Ranchi
- Sh. S. K. Saw, MCCS-2017
- Smt. Saroj, ISVE, Ranchi

Editorial Acknowledgements

We extend our thanks to all the authors for contributing to this book/proceeding by sharing their valuable research findings. We specially thank a number of reviewers for promptly reviewing the papers submitted to the conference. We are grateful to the volunteers, invited speakers, session chairs, sponsors, subcommittee members, members of the international advisory committee, members of the national advisory committee, members of the technical program committee, members of joint secretary and members of the scientific advisory committee for the successful conduct of the conference. The editors express their heartfelt gratitude towards Dr. A. K. S. Chandelle, President, IETE, New Delhi; Smt. Srimati Dagur, Past President, IETE, New Delhi; Sh. Sanjay Kumar Jha, Past Chairman, IETE, Ranchi, and Executive Engineer, Government of Jharkhand; Sh. Prasad Vijay Bhushan Pandey, DTO Term Cell1 BSNL, Ranchi, and Chairman, ISVE Ranchi; Prof. A. A. Khan, Former VC, Ranchi University; Prof. M. K. Mishra, VC, BIT Mesra; Dr. K. K. Thakur, CGMT, BSNL Ranchi; Prof. R. K. Pandey, VC, Ranchi University; Prof. P. K. Barhai, Former VC, BIT Mesra; Sh. R. Mishra, Former CMD, HEC Ranchi; Dr. M. Chakraborty, Professor, IIT Kharagpur; Dr. Ramgopal Rao, Professor, IIT Bombay, and Director IIT Delhi; Dr. P. Chakraborty, Professor, IIT BHU; Dr. Abhijit Biswas, Professor, Kolkata University; Dr. Subir Kumar Sarkar, Professor, Jadavpur University; Dr. Gaurav Trivedi, Associate Professor, IIT Guwahati; Dr. Y. S. Chauhan, Associate Professor, IIT Kanpur; Dr. B. K. Kaushik, Professor, IIT Roorkee; Dr. Shree Prakash Tiwari, Faculty, IIT Jodhpur; Dr. P. Kumar, Associate Professor, IIT Patna; Dr. M. Bhaskar, Professor, NIT Trichy; Dr. Adesh Kumar, Faculty, UPES University, Dehradun; Dr. Manish Kumar, Associate Professor, MMMUT Gorakhpur; Dr. Manish Mishra, Associate Professor, DDU University, Gorakhpur; Dr. Umesh Yadav, Professor, DDU University, Gorakhpur; Dr. J. K. Mandal, Professor, Kalyani University; Prof. D. Acharjee, President, ISTM Kolkata; Dr. N. Gupta, Professor, BIT Mesra Ranchi; Dr. Vibha Rani Gupta, Professor, BIT Mesra; Dr. B. K. Mishra, Professor, BIT Mesra; Dr. V. K. Jha, BIT Mesra; Sh. Ajay Kumar, AGM (admin), ARTTC BSNL Ranchi, and Chairman, IETE Ranchi;

Dr. P. R. Thakura, Executive Member, IETE and ISVE Ranchi, and Professor, BIT Mesra Ranchi; Dr. M. Chandra, Executive Member IETE Ranchi, and Professor, BIT Mesra Ranchi; Dr. S. K. Ghorai, Executive Member, IETE Ranchi, and Professor, BIT Mesra Ranchi; Dr. B. Chakraborty, Executive Member, IETE Ranchi, and Executive Engineer, Mecon, Ranchi; Dr. S. Chakraborty, Executive Member, IETE Ranchi, and Professor, BIT Mesra Ranchi; Dr. S. S. Solanki, Professor, BIT Mesra Ranchi; Dr. S. Pal, Professor, BIT Mesra Ranchi; Dr. S. Kumar, Executive Member, IETE Ranchi, and Associate Professor, BIT Mesra Ranchi; Dr. B. K. Bhattacharya, Professor, NIT Agartala; Dr. Anand Kumar Thakur, Treasurer, IETE Ranchi; Dr. Raj Kumar Singh, Executive Member, IETE Ranchi, and Faculty, RLSYC Ranchi University; Dr. R. K. Lal, Associate Professor, BIT Mesra Ranchi; Smt. Saroj, Treasurer, ISVE Ranchi; Prof. Jyoti Singh, Joint Secretary, ISVE Ranchi; Prof. A. K. Pandey, Secretary, ISVE Ranchi; Sh. Suraj Kumar Saw; Sh. Subro Chakraborty; Sh. Dipayan Ghosh; Sh. Ramkrishna Kundu, Executive Member, ISVE Ranchi; Sh. Deepak Prasad; Sh. Sumit Singh; Sh. H. Kar; Sh. Rajanish Yadav; Sh. Anup Tirkey for their endless support, encouragement, motivation to organize such prestigious event that paved the way for this book on Microelectronics, Computing & Communication Systems (MCCS). At last, we express our sincere gratitude towards the staff members of Springer, India, who helped in publishing this book.

Contents

Reduction of Redundant Frames in Active Wireless Capsule Endoscopy	1
Rahul Sharma, Rampal Bhadu, Surender Kumar Soni and Nithin Varma	
Analysis of Voltage Source Boost Inverter	9
Piyush Kumar Ojha and P. R. Thakura	
A Study on Filter Design Aspects of Single-Phase Inverter with Various Modulation Schemes	17
Pritha Roy, J. N. Bera, G. Sarkar and S. Chowdhuri	
Design, Analysis, and Testing of Low-Voltage CMOS OTA	25
Maninder Kaur and Jasdeep Kaur	
Speech-Based Access to Price of Different Agricultural Commodities Using MFCC, GMM, and Naïve Bayes Classifier	39
Sumit Srivastava, Arvind Kumar, Mahesh Chandra and G. Sahoo	
Dual Axis Solar Tracker for Solar Panel with Wireless Switching	49
Shahid Aziz and Mohammad Hassan	
A Node Stability Based Multi-metric Weighted Clustering Algorithm for Mobile Ad Hoc Networks	63
Naghma Khatoon and Amritanjali	
Design and Development of Microstrip Patch Antenna for Millimeter-Wave Application	79
Kumari Mamta, Raj Kumar Singh, Navin Kumar Sinha and Ritesh Kumar Keshri	
A Review Article on Fault-Tolerant Control (FTC) and Fault Detection Isolation (FDI) Schemes of Wind Turbine	87
Chitrita Saha and Amit Kumar Singh	

A Comprehensive Survey on Computational Grid Resource Management	97
Ankita and Sudip Kumar Sahana	
Thunderstorm Prediction Using Soft Computing and Wavelet	109
Kanchan Bala, Sanchita Paul and Mili Ghosh	
Design of RFID Tag Antenna with Impedance Matching Techniques at UHF Band	119
K. Rama Devi, A. Mallikarjuna Prasad and A. Jhansi Rani	
Decision Tree and Genetic Algorithm Based Intrusion Detection System	141
Chandrashekhar Azad and Vijay Kumar Jha	
A Novel Method of Image Denoising Using Nonlocal Algorithm	153
B. Jayalakshmi, G. Indraja and Saka Harshavardhan	
A Novel Multimedia Encryption and Decryption Technique Using Binary Tree Traversal	163
Annu Priya, Keshav Sinha, Manu Priya Darshani and Sudip Kumar Sahana	
ZC-CDTA Based Integrator Circuit Using Single Passive Component	179
Malladi Lakshmi Lavanya, Avireni Srinivasulu and V. Venkata Reddy	
Road and Traffic Sign Detection Using Colour Segmentation	189
Saka Harshavardhan, Vadlamudi Madhavi and Sajja Tejaswi	
Trimmed Median Filter for Removal of Noise from Medical Image	201
Pawan Kumar, Mahesh Chandra and Sanjeev Kumar	
Characterization of Interfering Signal in S Band of IRNSS	211
Surya Gupta, Darshna D. Jagiwala and Shweta N. Shah	
Enhancing Multibiometric System Security Using ECC Based on Score Level Fusion	223
Sandip Kumar Singh Modak and Vijay Kumar Jha	
Generation of Photographic Mosaic Using Apache Spark and Scalding for Image Processing	233
Santhoshi Rupa Gayatri Neralla	
Mitigation of Congestion in Transmission Line Using Series Smart Wire	249
Nibha Rani, Pallavi Choudekar, Divya Asija and P. Vishnu Astick	
Mobility Aware Distributed Clustering and Routing Algorithm Based on A* Search for Mobile Ad Hoc Networks	257
Naghma Khatoon and Amritanjali	

Floating Admittance Matrix Approach to Model Development of Active Devices and Circuits	267
Meena Singh and B. P. Singh	
An Efficient Approach for Monuments Image Retrieval Using Multi-visual Descriptors	281
Ravi Devesh and Jaimala Jha	
Comparison of ANN-Based MPPT Controller and Incremental Conductance for Photovoltaic System	295
Ruchira, Ram N. Patel and Sanjay Kumar Sinha	
Low Power Implementation of 32-Bit RISC Processor with Pipelining	307
Sneha Mangalwedhe, Roopa Kulkarni and S. Y. Kulkarni	
A Novel SINR-Based Cooperative Radio Resource Allocation Mechanism (SBC-RRAM) for LTE/Wi-Fi Radio Access System in Smart Home Environment	321
Bollampally Joy Persis and Sakuru K. L. V. Sai Prakash	
Optimal Location of Thyristor Controlled Series Compensator to Assuage Congestion in Transmission Network	333
Pallavi Choudekar, Shagun Kachwaha, Aaditya Jhunjhunwala and Anchal Dua	
An Efficient Brightness Preserving Contrast Enhancement Technique Using Discrete Wavelet Transform and Singular Value Decomposition	345
Priyanka Gupta, Jamvant Singh Kumare, Uday Pratap Singh and Rajeev Kumar Singh	
Computer-Assisted Valuation of Descriptive Answers Using Weka with RandomForest Classification	359
Ruhi Dubey and Rajni Ranjan Singh Makwana	
A 70.8 MW Wideband CMOS Low-Noise Amplifier for WiMAX Application	367
Sumit Singh, Deepak Prasad and Vijay Nath	
Computation of Discrete Fourier Transform (FFT): A Review Article	381
Shaik Qadeer, Mohammed Zafar Ali Khan and Mohammed Yousuf khan	
Ramanujan Sums and Signal Processing: An Overview	391
Debaprasad De, K. Gaurav Kumar, Archisman Ghosh and M. K. Naskar	
Analysis and Design of Bandgap Reference (BGR)	413
R. Akshaya and Siva Yellampalli	

Analytical Modelling of Room-Temperature GaAs/InAs_{0.3}Sb_{0.7} Detector for H₂S Gas Detection	451
Trilok Kumar Parashar and Rajesh Kumar Lal	
Fuzzy Prediction Model for Water Temperature in Scheffler Solar Reflector	469
Om Prakash	
A Reversible Data Hiding Using Difference-Histogram Modification on Multi-directional in Two-Dimensional Histogram	475
Anil Pinapati and R. Padmavathy	
A Novel Single-Phase Multilevel Inverter Topology with Reduced Component Count	489
Chandan Kumar, Tanmoy Maity and K. C. Jana	
Energy-Efficient 64-Bit Asynchronous Adder	499
K. Srilakshmi, A. V. N. Tilak, K. Srinivasa Rao and Y. Syamala	
PV Array's Resistance and Temperature Sensitivity Analysis with Shading Effects	509
Gourab Das, M. De and K. K. Mandal	
Effect of Location of Piezoelectric Sensor Over a Smart Structure	525
Sukesha	
Design and Implementation of a Reaction Timer Using CMOS Logic	533
Varun Bohra, Neha Nidhi, Sumit Singh, Deepak Prasad, Anand Kr. Thakur, Ajay Kumar and Vijay Nath	
A Novel Hybrid Resource Allocation Scheme for Maximum Fairness Among Multiple Services	545
Shubham Goswami, Sagnik Mukherjee, Iti Saha Misra, Deepan Mukherjee and Biswanath Chakraborty	
A Novice Approach to Implementation of System on Chip Based Smart CMOS Sensor for Quantum Computing Based Applications	563
Rajinder Tiwari	
Novel Approach for Sleep Transistor Sizing to Suppress Power and Ground Bouncing Noise in MTCMOS Clustering Technique	575
Neha Gupta, Priyanka Parihar, Vaibhav Neema and Praveen Singh	
Optimal Placement of Distributed Generation Using Genetic Algorithm Approach	587
Mohan Kashyap, Ankit Mittal and Satish Kansal	

Efficient Design and Simulation of Novel Exclusive-OR Gate Based on Nanoelectronics Using Quantum-Dot Cellular Automata.....	599
Mukesh Patidar and Namit Gupta	
Design Strategy for Smart Toll Gate Billing System	615
Varun Bohra, Deepak Prasad, Neha Nidhi, Anup Tiwari and Vijay Nath	
Novel Cell Search Method in Long-Term Evolution System	623
Smita A. Lonkar, K. T. V. Reddy and Sanket P. Singhania	
Various Feature Extraction and Classification Techniques.....	633
Dalvir Kaur and Sukesha Sharma	
Path Tracking Method of ALV Model Based on ADRC Strategy and Differential Flatness Theory	643
Abhinav Kumar and Sushma Kamlu	
Performance Analysis of Conventional SRAM with Higher Order SRAM Topologies	659
Ravneet Kaur, Garima Joshi, Maninder Kaur Sagg and Vishal Sharma	
Performance Analysis of TRDMA Under Multi-path Rician Fading Channel	677
Shashank Shekhar, Shanidul Hoque, Ashraf Hossain and Wasim Arif	
Analysis of Software Development Life Cycle Models	689
Amninder Singh and Puneet Jai Kaur	
Design of Narrowband 2.69 GHz CMOS Low-Noise Amplifier for WiMAX Application	701
Sumit Singh, Namrata Yadav, Abhishek Pandey, Deepak Prasad and Vijay Nath	
Sensitivity Analysis of Various Diamagnetic and Paramagnetic Materials Based on Faraday Rotation Principle	713
Sarita Kumari and Sarbani Chakraborty	
A Secure Three-Way Handshake Authentication Process in IEEE 802.11i	725
Anil Kumar and Partha Paul	
BrowserGuard2: A Solution for Drive-by-Download Attacks	739
Gireesh Joshi, R. Padmavathy, Anil Pinapati and Mani Bhushan Kumar	
GA-Based Energy Optimization in Traffic Grooming WDM Optical Mesh Network	751
Nishat Aafreen and Partha Paul	
Piezoelectric Energy Harvesting: A Developing Scope for Low-Power Applications	763
Oshin Garg, Sukesha Sharma, Preeti and Pardeep Kaur	

An Overview of Temperature Sensors	777
Deepak Prasad and Vijay Nath	
A 3.65 mW, Amplifier-Based Up-Conversion Mixer for Zigbee Application	785
Abhishek Pandey, Deepak Prasad and Vijay Nath	
Adaptive Compensation Algorithm for Flux Estimation of PM BLDC Motor Drives	795
Vijay Kumar Karan, P. R. Thakura and A. N. Thakur	
Design and Analysis of 10-bit, 2 MS/s SAR ADC Using Nonredundant SAR and Split DAC	803
Kalmeshwar N. Hosur, Girish V. Attimarad, Harish M. Kittur, Gopalkrishna G. Mane and S. S. Kerur	
Performance Analysis of Inter-satellite Optical Wireless Communication Using 12 and 24 Transponders	811
Ikkurthy Kavya Sri and Avireni Srinivasulu	
Synthesis of High-Speed Multivalued ALU for $(2^p \pm q)$ Radix	823
Arindam Banerjee, Swapan Bhattacharyya and Arpan Deyasi	
Author Index	839

About the Editors

Dr. Vijay Nath was born in Gorakhpur (UP), India, in 1976. He received his bachelor's degree in Physics and master's degree in Electronics from DDU Gorakhpur University, India, in 1998 and 2001, respectively. He also received PGDCN (GM) from MMMUT, Gorakhpur, in 1999. He received his Ph.D. degree in VLSI Design & Technology from Dr. RML Avadh University, Faizabad, in association with CEERI, Pilani, in 2008. From 2000 to 2001, he was Project Trainee in IC Design Group, CEERI, Pilani, under the guidance of Dr. K. S. Yadav (senior scientist). From 2002 to 2006, he served as Faculty in the Department of Electronics, DDU University, Gorakhpur. In 2006, he joined as a Faculty in the Department of Electronics and Communication Engineering, Birla Institute of Technology Mesra Ranchi (JH), India. He is Professor-in-charge of VLSI Design Lab, BIT Mesra, Ranchi. He is Faculty Advisor of NAPS: News & Publication Society, Advisor IEI Student Chapter (ECE) BIT Mesra and Honorary Secretary of IETE Ranchi Centre. He is a recipient of Vivekananda Techno Fiesta Award 2002, Young Scientist Award 2004, Cadence Design Contest 2013, 2014, CCSN Best Paper Award 2013, IEI Technical Contest Best Paper Award 2013. His research interests include analog, digital, mixed CMOS VLSI circuits, low-power VLSI circuits, ADC, DAC, PTAT, CMOS bandgap voltage reference, ASICs, embedded systems designs, smart cardiac pacemaker, smart grids, Internet of Things and early-stage cancer detection. He has to his credit around 110 publications in reputed Scopus and SCI journals and conferences. He has successfully completed three R&D projects funded by DST New Delhi, DRDL Hyderabad and MHRD New Delhi, and one project is in ongoing stage funded by RESPOND ISRO Ahmedabad. He developed e-learning course of VLSI Design in Pedagogy pattern funded by MHRD New Delhi. Now, the complete course is available in IIT Kharagpur official website and open for all IITs, NITs, BITs and technical universities. He is Editor of Proceeding of International Conference on Nanoelectronics, Circuits & Communication Systems (NCCS 2015) of Lecture Notes of Electrical Engineering, Springer. He is a member of several professional societies and academic bodies including IETE, ISTE, ISVE and IEEE.

Prof. Jyotsna Kumar Mandal received his M.Sc. in Physics from the Jadavpur University in 1986 and M. Tech. in Computer Science from the University of Calcutta. He was awarded Ph.D. in Computer Science and Engineering by the Jadavpur University in 2000. Presently, he is Professor of Computer Science and Engineering and former Dean, Faculty of Engineering, Technology and Management, Kalyani University, Kalyani, Nadia, West Bengal, for two consecutive terms. He started his career as Lecturer at NERIST, Arunachal Pradesh, in September 1988. He has teaching and research experience of 28 years. His research interests include coding theory, data and network security, remote sensing and GIS-based applications, data compression, error correction, visual cryptography, steganography, security in MANET, wireless networks and unify computing. He has guided 15 Ph.D. students, 2 submitted (2015–16) and 8 ongoing. He has supervised 3 M.Phil. and more than 50 M.Tech. dissertations. He has life member of the Computer Society of India since 1992, CRSI since 2009, ACM since 2012, IEEE since 2013 and Fellow member of IETE since 2012, Honorary Chairman of CSI Kolkata Chapter. He has chaired more than 30 sessions in various international conferences and delivered more than 50 expert/invited lectures during the last 5 years. He has acted as program chair of many international conferences and edited more than 15 volumes of proceedings from Springer Series, ScienceDirect, etc. He is reviewer of various international journals and conferences. He has over 360 articles and 6 books published to his credit. He is one of the editors for Springer AISC Series, FICTA 2014, CSI 2013, IC3T 2015, INDIA 2015 and INDIA 2016. He is also the corresponding editor of CIMTA 2013 (Procedia Technology, Elsevier), INDIA 2015 (AISC Springer) and ICIC2 2016 (AISC Springer).

An Efficient Approach for Monuments Image Retrieval Using Multi-visual Descriptors

Ravi Devesh and Jaimala Jha

1 Introduction

Nowadays, numerous amount of images are being captured by different image acquisition techniques; these images database are used in many day-to-day applications, for example, military, remote sensing, engineering, medical field, crime prevention, environmental, astronomy, multimedia, and many other applications [1].

For handling the gigantic amount of stored and exchanged image information, some automatic image retrieval techniques are required. In case of database having less number of images, it is practicable to discover a required image simply by browsing while in case a database containing thousands of images it is not practicable to browse the desired image thus some more effective techniques are needed. Image retrieval is the procedure of finding the images having similar kind of content as query image given by the user based upon some similarity functions [2, 3].

Image retrieval can be implemented based on the following two methods:

- (a) Text-Based Image Retrieval
- (b) Content-Based Image Retrieval

2 Related Work

The word CBIR is used for explaining the retrieval of images based on visual descriptors that are extracted from image automatically in CBIR system [4]. The descriptor used for retrieval system can be either local descriptor or global

R. Devesh (✉) · J. Jha
Department of CSE & IT, MITS, Gwalior, Madhya Pradesh, India
e-mail: scholar.mits@gmail.com

J. Jha
e-mail: jaimala.jha@gmail.com

descriptor. But the process used for extraction of descriptors must be automatic. The set of descriptors used has an important role during retrieval of similar images. A robust descriptor set is made by combining shape, texture, and color features. Shape feature is broadly used in multimedia information service system (MISS).

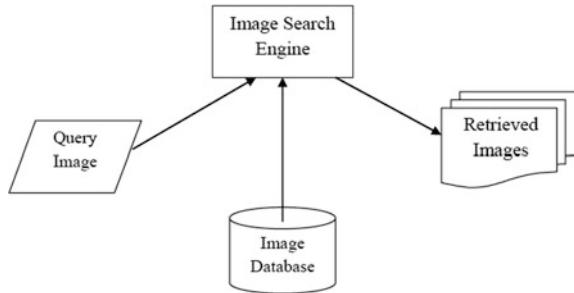
Padmashree Desai et al. in 2013 proposed a CBIR system which classifies the archaeological monuments based on local features [5]. In this paper, morphological gradients with invariant moments for shape feature and gray level co-occurrence matrix (GLCM) for texture feature extraction are used. For comparing the results of proposed system, Sobel and Canny operators are used.

Shilpa Yaligar et al. in 2013 proposed a system for recognition and fetching of archaeological monuments utilizing visual descriptors [6]. Database used consists of 500 images with five categories. For shape, feature morphological gradients were calculated, and then invariant moments were applied on the gradients; GLCM is used for the extraction of texture feature.

Fuxiang Lu et al. in 2016 proposed improved local binary pattern (ILBP) that describes texture feature of an image more efficiently [7]. A significant group of basic primitives is discovered like lines, cross-intersections, and T-junctions; these are generally unnoticed by uniform LBP method.

Malay S. Bhatt et al. in 2015 proposed a system which extracts genetic programming evolved spatial descriptors and on the basis of linear support vector machine (SVM), classification of Indian monuments visited by tourists is performed [8].

Not much work is done in this field. So, it is still a dynamic research field. We need sophisticated systems which could correctly identify, classify, and retrieve monuments images using local or global features.


3 Proposed System

In this paper, it is proposed a CBIR system which is used to retrieve the images of monuments based on low-level features. It forms the proficient combination of shape, texture, and color features of an image. Here, the dataset consists of images of monuments of different categories. The images presented in database are loaded.

The subsequent images are given as input to feature extraction techniques to extract desired features and form a set of extracted features. These features are chosen proficiently so that retrieval accuracy and recall rate is improved. In the last step, the similar images from database are retrieved. This method produces noble outcomes for the monument images in comparison to other methods available.

In the proposed methodology, it used morphological operators along with invariant moment in extracting the shape features [5], improved local binary pattern (ILBP) in extracting the texture features and RGB color histogram in extracting the color feature of images [7, 9]. The proposed CBIR system is depicted in Fig. 1. Similarity metrics are used for evaluating the distance among the query image, and N similar images present in the database. Precision and recall values are evaluated for the purpose of performance evaluation of the proposed system.

Fig. 1 Image retrieval system

4 Feature Extraction

Mathematical morphology has a sole benefit in detecting boundary of an image, as it is based on set operation and nonlinear in nature. Morphological methods can be applied on image with distinct structuring element. Such operations are Erosion, Dilation, Open, and Close [5, 6].

5 Overview of Mathematical Morphology

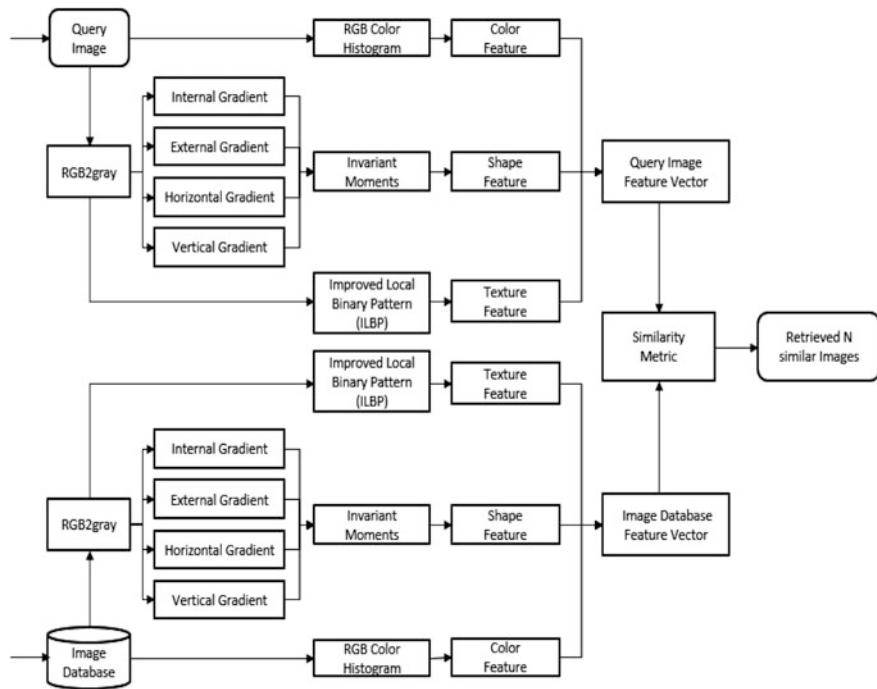
The elementary notion of mathematical morphology explains use of structuring element of particular type to determine and elicit the relative shape in image to attain the intents of image analysis and identification [6]. In morphology, structuring element is applied on given image, and output image is obtained. Distinct morphological operations such as Dilation, Erosion, Open, and Close can be enforced on image with distinct structuring element [6].

Erosion is given in Eq. (1)

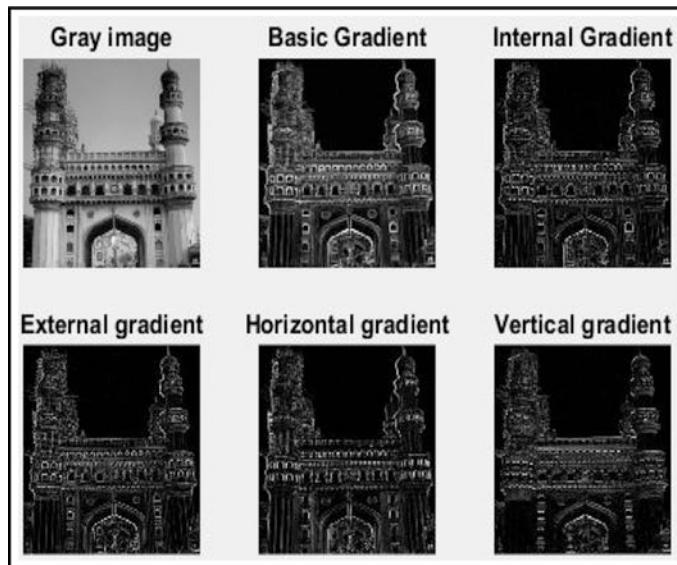
$$(f \ominus b)(x, y) = \min\{f(x + i, y + j) - b(i, j) | (x + i, y + j)\}. \quad (1)$$

Dilation is given in Eq. (2)

$$(f \oplus b)(x, y) = \max\{f(x - i, y - j) + b(i, j) | (x - i, y - j)\} \quad (2)$$


Basic gradient = Image Dilated – Image Eroded

Internal gradient = Image Original – Image Eroded


External gradient = Image Dilated – Image Original.

Five edge maps will be acquired for given image. Shape descriptors are acquired for each of the boundary images. Out of five edge maps obtained, only internal gradient, external gradient, horizontal gradient, and vertical gradients edge maps are used.

Figure 3 depicts edge maps acquired after applying morphological gradients on input image (Fig. 2).

Fig. 2 Architecture of proposed CBIR system

Fig. 3 Boundary maps acquired for the given image

6 Shape Feature

Seven (2-D) moment invariants that are unaffected by rotation, mirroring, translation, and change in scaling are known by Eq. (3). Shape descriptor vector comprises seven descriptor values [5, 10].

$$\left. \begin{aligned}
 I1 &= \eta_{20} + \eta_{02} \\
 I2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\
 I3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\
 I4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\
 I5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \left[(\eta_{30} + \eta_{12})^2 \right. \\
 &\quad \left. - 3(\eta_{21} - \eta_{03})^2 \right] + (3\eta_{21} - \eta_{03}) \\
 I6 &= (\eta_{20} - \eta_{02}) \left[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \right] \\
 &\quad + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\
 I7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12}) \\
 &\quad \left[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \right] - (\eta_{03} + 3\eta_{12}) \\
 &\quad (\eta_{21} + \eta_{03}) \left[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \right]
 \end{aligned} \right\} \quad (3)$$

7 Texture Feature

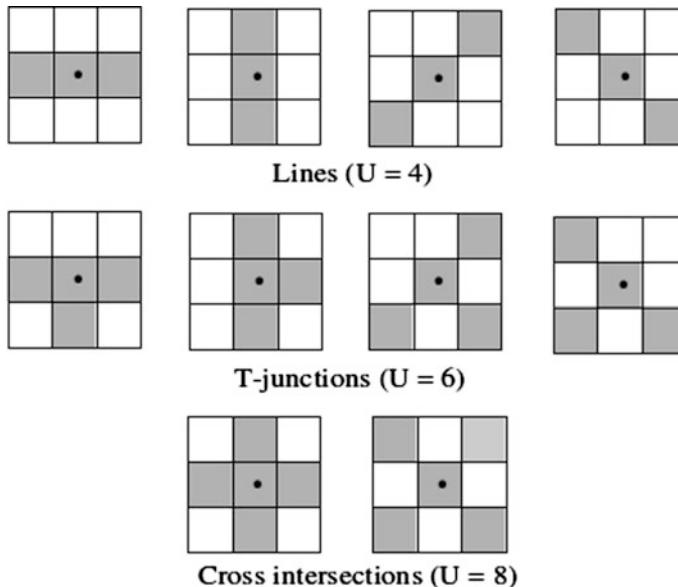
Local binary pattern (LBP) feature for extraction of texture information was introduced by Ojala et al. [11]. This operator is stout against change in illumination and is characterized by a computational simplicity and capability to encode texture details. Every pixel in LBP feature is described by a binary code. Each pixel's (central) gray level is tested with its eight neighborhood of size (size 3×3) [12]. If neighborhood pixels' value is greater than the central pixel, then the result is fixed to one else to zero. For producing binary code, multiply the results with weights given by 2's powers. For the central pixel (x, y) LBP code is given as follows [7]:

$$\text{LBP}_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c)2^p, \quad (4)$$

$$s(z) = \begin{cases} 1, & \text{if } z \geq 0, \\ 0, & \text{otherwise,} \end{cases} \quad (5)$$

where g_c is the value of intensity for the pixel in center (x, y) , and p th neighbor value is g_p . When a neighbor does not fall at integer coordinates, bilinear interpolation is used to determine its intensity value.

An extension of original LBP is called uniform LBP, denoted as $\text{LBP}_{P,R}^{u2}$.


$$U(\text{LBP}_{P,R}) = \sum_{p=0}^{P-1} |s(g_{p+1} - g_c) - s(g_p - g_c)|, \quad (6)$$

where g_p is equal to g_0 . If $U(\text{LBP}_{P,R}) \leq 2$, then LBP will be called as uniform (Fig. 4).

ILBP can be defined as

$$\text{ILBP}_{P,R}^{ri} = \begin{cases} \sum_{p=0}^{P-1} s(g_p - g_c), & \text{if } U(\text{LBP}_{P,R}) \leq 2, \\ P - 1 + \frac{U}{2}, & \text{otherwise,} \end{cases} \quad (7)$$

where U is defined in (6). By doing so, the $\text{ILBP}_{P,R}^{ri}$ operator has $3/2P$ different output labels.

Fig. 4 Basic primitives detected by gray and white rectangles relate to bit values 1 and 0 in binary forms [7]

8 Color Feature

The distribution of colors in an image can be represented with color histogram. Color descriptor is a subtle and comprehensible descriptor of an image, and generally, histogram-based techniques are preferred to show it [9, 13]. The basic benefit of color histogram is its high speed, require less memory and not subject to change in size of the image, and other factors.

Let there are M rows and N columns in an image. Each element of color space is separated into three bins such as B_{red} , B_{green} , and B_{blue} . Also let $R(i, j)$, $G(i, j)$, $B(i, j)$ be the intensity values in each portion of color space, and I_r , I_g , I_b be the bin index values of the color image's histogram using three factors. By dividing $H(I_r, I_g, I_b)$ by the size of image, normalized histogram is obtained. The pseudocode for RGB color histogram is given as shown below:

1. Initialization:

```

for  $I_r$  = 0 to  $B_{red} - 1$ 
  for  $I_g$  = 0 to  $B_{green} - 1$ 
    for  $I_b$  = 0 to  $B_{blue} - 1$ 
       $H(I_r, I_g, I_b) = 0$ 
    end for
  end for
end for

```

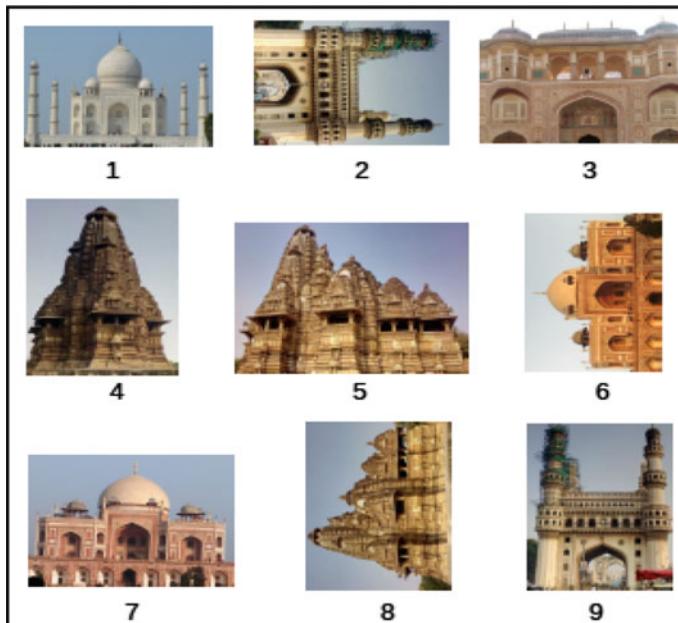
2. Updating Histogram:

```

for  $i$  = 0 to  $M - 1$ 
  for  $j$  = 0 to  $N - 1$ 
     $I_r = \lfloor R(i, j) \times B_{red} / 256 \rfloor$ 
     $I_g = \lfloor G(i, j) \times B_{green} / 256 \rfloor$ 
     $I_b = \lfloor B(i, j) \times B_{blue} / 256 \rfloor$ 
     $H(I_r, I_g, I_b) = H(I_r, I_g, I_b) + 1$ 
  end for
end for.

```

Here, $\lfloor x \rfloor$ is a floor function which returns largest integer smaller than x .


9 Analysis and Outcomes of Proposed System

Database of 360 images of six different classes is used to verify the performance of the proposed system. For the purpose of measuring the retrieval effectiveness of the system, precision and recall values are used.

10 Image Database

The most vital task is the collection of data, no database is directly available of monument images for experimental purpose. The database presented in this paper consists of six different categories. Each image used here is rotated left, rotated right, rotated 180°, flipped horizontal, and flipped vertical. Database is collected by visiting the archaeological monuments individually and images are captured, each image is of 72 dpi. Camera used for taking the images is of 13 megapixels, a feasible distance from the monument while capturing the monument is maintained so that image captured is of good quality and consists of more details. Preprocessing is done to make the database suitable for experimental purpose.

Six randomly selected images from all categories are used as query images, some images used as query image are shown in Fig. 5.

Fig. 5 Sample images used as query

11 Similarity Metrics and Performance Evaluation

For calculating similarity between two images, six similarity metrics are used, namely: Euclidean (L2), Cityblock, Chebyshev, Minkowski, Cosine, and Normalized Euclidean. All these six similarity metrics are used one by one to calculate distance between the query image feature vector and feature vector of each image from database. Comparison table is also built on the basis of retrieval accuracy for different metrics.

Performance evaluation is done by using precision and recall. Average precision as well as recall is computed based on the number of retrieved relevant images. Basic methods of evaluating precision and recall are given by Eqs. (8) and (9)

$$\text{Precision} = \frac{|\{\text{Relevant images}\} \cap \{\text{Retrieved images}\}|}{|\{\text{Retrieved images}\}|} \quad (8)$$

$$\text{Recall} = \frac{|\{\text{Relevant images}\} \cap \{\text{Retrieved images}\}|}{|\{\text{Relevant images}\}|}. \quad (9)$$

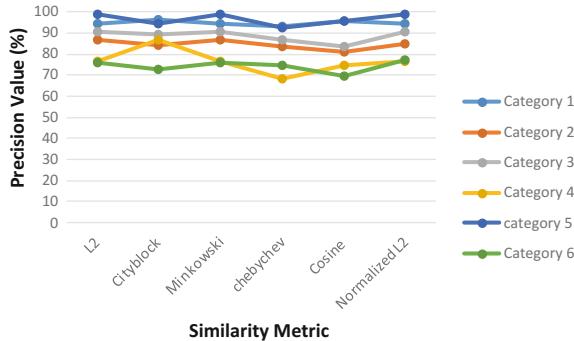

Table 1 gives the average precision (%) of six different similarity metrics for six different categories of images. Six images of each category are selected randomly from the database. These selected images are then provided as queries and precision (%) for, respectively, selected image is calculated, and then average of the resulted precision is taken.

Figure 6 illustrates the plot of precision (%) of six different similarity metrics for six different classes. Six random images are chosen from the image database. Chosen images are then given as queries and result is attained.

Table 2 gives the average recall (%) of six different similarity metrics for six different categories of images. Six images of each category are selected randomly from the database. These chosen images are then provided as queries and recall (%) for each selected image is calculated, and then average of the resulted precision is taken.

Table 1 Average precision (%) using six similarity metrics

	Similarity metrics (Nr = 50)					
Image category	Euclidean	City block	Minkowski	Chebyshev	Cosine	Normalized Euclidean
Category 1	94.66	96.00	94.66	93.00	95.66	94.66
Category 2	87.00	84.00	86.66	83.66	81.00	85.00
Category 3	90.66	89.33	90.66	87.00	83.66	90.33
Category 4	76.66	87.00	76.66	68.00	74.66	76.66
Category 5	98.66	94.66	98.66	92.66	95.66	98.66
Category 6	75.66	72.66	75.66	74.66	69.33	77.00

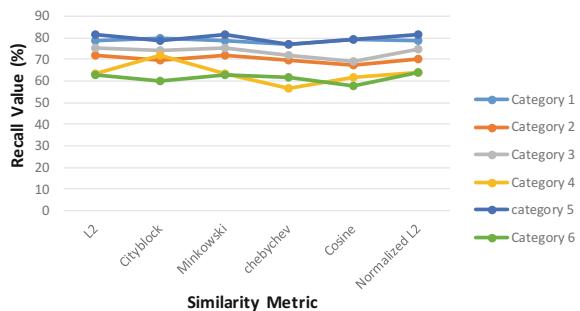
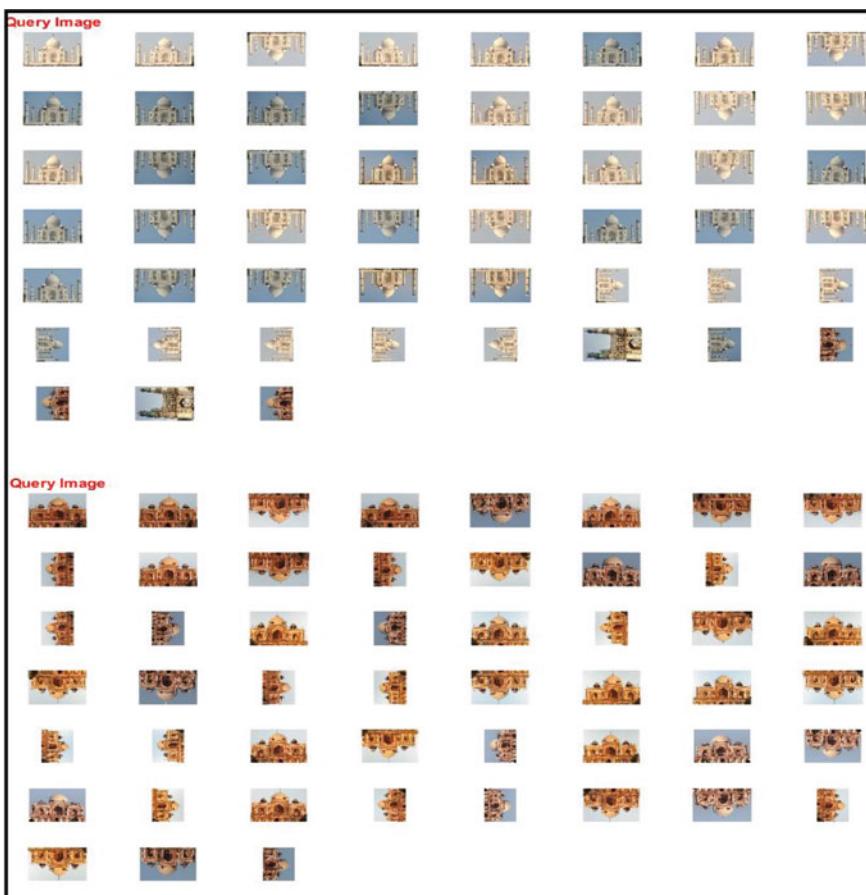

Fig. 6 Plot of average precision (%) of different similarity metrics for six different categories

Table 2 Average recall (%) using six similarity metrics

Image category	Similarity metrics (Nr = 50)					
	Euclidean	City block	Minkowski	Chebyshev	Cosine	Normalized Euclidean
Category 1	78.56	79.68	78.56	77.19	79.39	78.56
Category 2	72.21	69.72	71.92	69.43	67.23	70.55
Category 3	75.19	74.11	75.19	72.21	69.38	74.94
Category 4	63.62	72.21	63.62	56.44	61.96	93.91
Category 5	81.34	78.56	81.88	76.90	79.39	81.88
Category 6	62.79	60.30	62.79	61.96	57.54	63.91

Figure 7 shows the plot of recall (%) of six different similarity metrics for six different classes. Six random images are chosen from the image database. These images are then given as queries and result is obtained.


Fig. 7 Plot of average recall (%) of different similarity metrics for six different categories

12 Results

The results generated by proposed system are good; it can be perceived in the graphs of precision and recall, where average precision and average recall of six categories of images are shown in Figs. 5 and 6. 50 images are retrieved for the input query image. A snapshot of retrieved similar images is depicted in Fig. 8.

Results for the implemented system show that the system is efficient enough to retrieve similar kind of images for monument images database. The database used for experimental purpose is synthetic database and may vary from the database used in other papers. The system presented in this paper includes all the three descriptors so it is able to differentiate and retrieve images more accurately and can be applied on any database of monument images.

Fig. 8 Retrieved N similar images

13 Conclusion

The CBIR system proposed in this paper is an efficient approach to retrieve monument images. Shape feature of an image is extracted by using mathematical morphology, texture feature is extracted using ILBP, and color feature is extracted using RGB color histogram. The retrieval technique present in this paper for monument image retrieval is better than other retrieval techniques, because color feature is also considered in this proposed system which produces more precise results.

References

1. Ruchi Jayaswal and Jaimala Jha, "A hybrid approach for image retrieval using visual descriptor," in ICCCA 2017 unpublished.
2. Ravi Devesh, Jaimala Jha and Ruchi Jayaswal, "Retrieval of Monuments Images Through ACO Optimization Approach," International Research Journal of Engineering and Technology (IRJET), Vol. 4, Issue 7, pp. 279–285, 2017.
3. Ruchi Jayaswal, Jiamala Jha and Ravi Devesh, "An Efficient Method of Image Mining using k-Medoid Clustering Technique," International Journal of Computer Science and Engineering (IJCSE), Vol. 5, Issue 3, pp. 206–214, 2017.
4. Manish K. Shriwas and V. R. Raut, "Content Based Image Retrieval: A Past, Present and New Feature Descriptor," in International Conference on Circuit, Power and Computing Technologies [ICCPCT], 2015.
5. Padmashree Desai, Jagadeesh Pujari, N.H. Ayachit and V. Kamakshi Prasad, "Classification of Archaeological Monuments for Different Art forms with an Application to CBIR," in International Conference on Advances in Computing, Communications and Informatics (ICACCI), ISBN: 978-1-4673-6217-7/13/ 2013.
6. Shilpa Yaligar, Sanjeev Sannakki and Nagaratna Yaligar, "Identification and Retrieval of Archaeological Monuments Using Visual Features," in Proceedings of International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA) 2013.
7. Fuxiang Lu, Jun Huang, "An Improved Local Binary Pattern operator for texture classification," ICASSP 2016 pp. 1308-1311, ISBN: 978-1-4799-9988-0/16.
8. Malay S. Bhatt and Tejas P. Patalia, "Genetic Programming Evolved Spatial Descriptor for Indian Monuments Classification," in IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS) 2015 pp. 131–136.
9. C. Singh and K. Preet Kaur, "A fast and efficient image retrieval system based on color and texture features," J. Vis. Commun. (2016), <https://doi.org/10.1016/j.jvcir.2016.10.002>.
10. Jaimala Jha and Dr. Sarita Sign Bhaduria "Review of Various Shape Measures for Image Content Based Retrieval," International Journal of Computer & Communication Engineering Research Nov. 2015.
11. T. Ojala, M. Pietikainen and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, Vol. 42, pp. 425–436, 2009.

12. Leila Kabbai, Mehrez Abdellaoui and Ali Douik, “Content Based Image Retrieval Using Local and Global Features Descriptor,” in 2nd International Conference on Advances Technologies for Signal and Image Processing –AT SIP’2016, March 21–24, 2016, Monastir, Tunisia, pp. 151-154, 2016.
13. Kanwal Preet Kaur, “On Comparative Performance Analysis of Color, Edge and Texture Based Histogram for Content Based Color Image Retrieval,” ISBN: 978-1-4799-6896-1/14, 2014.